Thomas Borsoni
supervised by
Laurent Boudin & Laurent Desvillettes
Mesoscopic
Microscopic
Macroscopic
(statistical)
Density of molecules: \(f \equiv f_{t,x}(v)\)
Statistical description of a monoatomic gas
[A. Greg: Kinetic theory of gases, wikipedia.]
advection
collisions
(e.g. \(\mathrm{Ar} \) )
" "
mass, momentum & energy
\(B\) satisfies symmetry & reversibility
sub-manifold of \((\R^3)^3\)
Density of molecules: \(f \equiv f_{t,x}(v)\)
Statistical description of a monoatomic gas
[A. Greg: Kinetic theory of gases, wikipedia.]
advection
collisions
[A. Greg: Kinetic theory of gases, wikipedia.]
Focus on collisions
Density of molecules: \(f_t(v)\)
\(x \)
advection
\(+ \, v \cdot \nabla_x f\)
The Boltzmann entropy:
2. \(D(g) = 0 \iff g =M \) a Maxwellian:
characterization of equilibria
Boltzmann's H Theorem
1. If \(f \equiv f_t(v)\) solves
\(2^{\rm nd}\) principle of thermodynamics
\((HB)\)
then
Illustration of the expected behaviour
Conserved quantities during collisions
(mass, momentum & energy)
Entropy functional
Equilibrium distribution
(collision rules)
monoatomic molecules
polyatomic
molecules
Part \(\mathrm{I}\)
Part \(\mathrm{I I}\)
polyatomic molecules
resonant collisions
fermions
Part \(\mathrm{III}\)
e.g. \(\mathrm{Ar}\)
e.g. \(\mathrm{H_2O}, \mathrm{N_2}\)
e.g. \(\mathrm{CO_2}\)
e.g. \(\mathrm{e^-}\)
\(\mathrm{I}\). Boltzmann equation for polyatomic gases
\(\mathrm{II}\). Boltzmann equation for polyatomic gases with (quasi-)resonant collisions
\(\mathrm{III}\). Boltzmann-Fermi-Dirac equation
& contributions
- General modeling framework
- Relationships between models
- Compactness result in resonant setting
- Modelling & study of quasi-resonant Boltzmann
- Entropy/entropy production inequalities via a transfer method
- Relaxation to equilibrium with explicit rate
w/ Lods
w/ Boudin, Mathiaud, Salvarani
w/ Bisi, Groppi
[1,2]
[4]
[5]
[3]
[1] T. B., M. Bisi, M. Groppi: "A general framework for the kinetic modelling of polyatomic gases", Commun. Math. Phys., 2022.
[2] M. Bisi, T. B., M. Groppi: "An internal state kinetic model for chemically reacting mixtures of monatomic and polyatomic gases", Kinet. Relat. Models, 2024.
[3] T. B., L. Boudin, F. Salvarani: "Compactness property of the linearized Boltzmann operator for a polyatomic gas undergoing resonant collisions", J. Mat. Anal. Appl., 2023.
[4] T. B.: "Extending Cercignani's conjecture results from Boltzmann to Boltzmann-Fermi-Dirac equation", J. Stat. Phys., 2024.
[5] T. B., B. Lods: "Quantitative relaxation towards equilibrium for solutions to the Boltzmann-Fermi-Dirac equation with cutoff hard potentials", preprint, 2024.
2. Model with continuous
energy levels
[Borgnakke, Larsen, Desvillettes...]
1. Model with discrete
energy levels
[Bisi, Groppi, Spiga,...]
Internal energy
(rotation, vibration,...)
\(\{\epsilon_n\}_n\) energy levels
\(I \in \R_+\) energy level
integrate w.r.t. \(\varphi(I) \, \mathrm{d}I\)
rotation
vibration
rotation & vibration
rotation
rotation & vibration
vibration
integrate w.r.t. \(\varphi \textcolor{black}{(I) \, \mathrm{d} I}\)
General modeling framework
Provide a kinetic model taking rotation and vibration into account
with M. Bisi & M. Groppi
[1]
[2]
[1] T. B., M. Bisi, M. Groppi: "A general framework for the kinetic modelling of polyatomic gases", Commun. Math. Phys., 2022.
[2] M. Bisi, T. B., M. Groppi: "An internal state kinetic model for chemically reacting mixtures of monatomic and polyatomic gases", Kinet. Relat. Models, 2024.
A. General internal states framework
B. Probability theory interpretation & links between approaches
C. Extension to mixtures
\(\R^3 \times \textcolor{orange}{\R^3 \times \N \times \N \times \N}\)
state of the molecule
space of states
energy of the molecule
An example:
\(\R^3 \times \textcolor{orange}{\mathcal{E}}\)
state of the molecule
space of states
energy of the molecule
measured space \((\mathcal{E}, \mu)\)
1. Microscopic state of the molecule:
Total energy of the molecule with state \((v, \zeta)\):
velocity \(v \in \R^3\) and internal state \(\zeta \in \mathcal{E}\)
2. Space of internal states:
\(\varepsilon : \mathcal{E} \to \R\)
3. Internal energy function:
\(\varepsilon^0 := \text{inf ess}_{\mu} \;\varepsilon\) \(> -\infty\),
existence of fundamental energy level
finiteness of the partition function
\(\displaystyle \int_{\mathcal{E}} e^{-\beta \, \bar{\varepsilon}(\zeta)} \, \mathrm{d} \mu(\zeta)\) \(< +\infty\),
\(\forall \beta>0\)
\(\bar{\varepsilon} := \varepsilon - \varepsilon^0\) (\( : \mathcal{E} \to \R_+\))
\(f \equiv f_{t,x}(v, \textcolor{orange}{\zeta})\) density of molecules
Boltzmann equation:
Collision operator:
mass, momentum & energy
[Bisi, B., Groppi]
2. \(D(g) = 0 \iff g = \mathcal{M} \), a generalized Maxwellian:
characterization of equilibria
Gibbs
Polyatomic (general setting) H Theorem
1. If \(f \equiv f_t(v,\zeta)\) solves
\(2^{\rm nd}\) principle of thermodynamics
then
Boltzmann entropy:
polyatomic internal structure
probability theory setting
\( (\Omega, \; \mathbb{P}) \) space of events
\( X : \Omega \to \R \) real random var.
\( (\mathcal{E}, \; \mu) \) space of internal states
\( \bar{\varepsilon} : \mathcal{E} \to \R_+ \) energy function
\( \bar{\varepsilon} = \varepsilon - \inf \varepsilon \)
\( (\R, \, \mathbb{P}_X)\) space of outcomes
\( \mathbb{P}_X\) on \(\R\) law of \(X\)
\( (\R_+, \, \mu_{\bar{\varepsilon}}) \) space of energy levels
\( \mu_{\bar{\varepsilon}}\) on \(\R_+\) energy law
\( ((0,1), \, \mathrm{Leb}) \) space of quantiles
\( F^{-1}_{\mathbb{P}_X}: (0,1) \to \R\) quantile function
\( ((0,\mu(\mathcal{E})), \, \mathrm{Leb}) \) space of energy quantiles
\( F^{-1}_{\mu_{\bar{\varepsilon}}}: (0,\mu(\mathcal{E})) \to \R_+\) energy quantile func.
\(\varphi\) can then be computed "ab initio"
\( (\R_+, \, \mu_{\bar{\varepsilon}}) \) space of energy levels
\( \mu_{\bar{\varepsilon}}\) on \(\R_+\) energy law
1. \(\mu_{\bar{\varepsilon}}\) is a discrete measure
supported on \(\{\epsilon_n\}_n\)
model with discrete energy levels
[Bisi, Groppi, Spiga,...]
with energy levels \(\{\epsilon_n\}_n\)
2. \(\mu_{\bar{\varepsilon}}\) has a density \(\varphi\) w.r.t.
Lebesgue measure
model with continuous energy levels
[Borgnakke, Larsen, Desvillettes...]
internal state
internal energy level
internal energy quantile
\(\zeta \in \mathcal{E}\)
\(\mu\)
\(\varepsilon\)
\( I \in \R_+\)
\(\mu_{\bar{\varepsilon}}\)
\( q \in \R_+\)
\(\mathrm{Id}_{\R_+}\)
\(F_{\mu_{\bar{\varepsilon}}}^{-1}\)
Lebesgue
variable
measure
energy function
Explicit computations
Numerical simulations
(particle-based)
internal state
internal energy level
internal energy quantile
Construct
Analyse
Simulate
2. Characterization of equilibria
H Theorem
1. \(2^{nd}\) principle of thermodynamics
3. Mass-action law
\(\bullet\) models \((\mathcal{E_i},\mu_i)\) and \(\varepsilon_i\) for \(i = 1, \dots, N \)
\(\bullet\) study \(f \equiv (f_i)_i\), with \( f_i : \R^3 \times \mathcal{E}_i \to \R_+ \)
\(\bullet\) system of Boltzmann equations
collisions &
chemical reactions
Energy of reaction:
[Bisi, B., Groppi]
\(\varepsilon^0 := \text{inf ess}_{\mu} \;\varepsilon\)
Resonant collisions for some polyatomic molecules (e.g. CO\(_2\) )
compactness result
[3]
[3] T. B., L. Boudin, F. Salvarani: "Compactness property of the linearized Boltzmann operator for a polyatomic gas undergoing resonant collisions", J. Mat. Anal. Appl., 2023.
with Boudin, Mathiaud, Salvarani
with Boudin, Salvarani
resonant
linearized Boltzmann operator
A. Boltzmann model with resonant collisions
B. Boltzmann model with quasi-resonant collisions
C. Relaxation of temperatures and Landau-Teller equations
continuous internal energy levels model
conservations for a resonant collision
separate conservation of kinetic and internal energies
uncoupling of \(v\) and \(I\)
Resonant collision operator
[Boudin, Rossi, Salvarani]
2. \(D^{\rm res}(g) = 0 \iff g = M^{\rm res} \), a two-temperature Maxwellian:
characterization of equilibria
Polyatomic resonant H Theorem
1. If \(f \equiv f_t(v,I)\) solves
\(2^{\rm nd}\) principle of thermodynamics
then
Boltzmann entropy:
resonant collision operator \(Q(f)\)
linearize around equilibrium
resonant linearized operator \(\mathcal{L}f\)
[T.B., Boudin, Salvarani]
Theorem. \(K\) compact operator of \(L^2(\R^3 \times \R_+, \mathrm{d} v \, \varphi(I) \, \mathrm{d}I)\)
useful for
Proof strategy:
BONUS: a nice change of variables in the sphere (variant to Grad's proof / compactness monoatomic)
\(\bullet\) Separation of kinetic and internal energies
\(\bullet\) Two temperatures (kinetic & internal) at equilibrium
conservations for a quasi-resonant collision
how to make this rigorous?
Set of allowed collisions in the
resonant polyatomic case
sub-manifold \(\mathcal{V}_0\) with 1 dimension less than \(\mathcal{V}\)
Resonant collision kernel
manifold \(\mathcal{V} \subset (\mathbb{R}^3)^4 \times (\mathbb{R}_+)^4\)
Set of allowed collisions in the
quasi-resonant case
manifold \(\mathcal{V} \subset (\mathbb{R}^3)^4 \times (\mathbb{R}_+)^4\)
sub-manifold \(\mathcal{V}_{\lambda}\) with same dimension as \(\mathcal{V}\)
Quasi-resonance encoded in the collision kernel
\(\lambda > 0\) quasi-resonance parameter
Family of collision kernels:
Family of collision operators:
Resonant asymptotics
associated resonant model
2. Equilibria: one-temperature Maxwellian:
1. \(2^{nd}\) principle of thermodynamics
Quasi-resonant H Theorem
same as standard polyatomic
Conjecture
If \(f\) solution to the quasi-resonant Boltzmann equation with parameter \(\lambda\) "small" enough, then
time
\(T_i\) & \(T_k\) relax to each other
\(f\) (almost) stays a two-temperature Maxwellian (\(T_i\) & \(T_k\))
\(f\) relaxes to a two-temperature Maxwellian
short-time
long-time
derivation of explicit ODE:
Landau-Teller
Two main properties:
1. Quasi-resonant dynamic \(\sim\) resonant dynamic /
2. Quasi-resonant equilibrium : one temperature
resonant equilibrium: two temperatures
parameters: \(\lambda = 0.1\), \(T_i^0 = 50\), \(T_k^0 = 1\), \(T_{eq} = 20.6\)
relative \(L^2\) error \(\sim 10^{-3}\)
Numerical experiment
Landau-Teller equations:
For a quasi-resonant dynamic:
with \(\lambda\) "small"
for a certain class of collision kernels
Asymptotic-Preserving (AP) scheme
To simulate the quasi-resonant Boltzmann equation with parameter \(\lambda\) "small",
time
\(t_0\)
\(\mathcal{O}(\lambda^{-2})\)
Get \(T_i\) & \(T_k\) by solving the corresponding Landau-Teller system
Take the solution to be a two-temperature Maxwellian (\(T_i\) & \(T_k\))
Simulate the corresponding resonant Boltzmann equation
numerically cheap
numerically expensive
Sources of error:
theoretical
numerical
Entropy methods: functional inequalities
known
new!
Explicit rate of relaxation to equilibrium for solutions to the Boltzmann-Fermi-Dirac equation
entropy inequality
classic Boltzmann
entropy inequality
Boltzmann-Fermi-Dirac
explicit rate of relaxation to equilibrium
with B. Lods
[5]
[4]
[4] T. B.: "Extending Cercignani's conjecture results from Boltzmann to Boltzmann-Fermi-Dirac equation", J. Stat. Phys., 2024.
[5] T. B., B. Lods: "Quantitative relaxation towards equilibrium for solutions to the Boltzmann-Fermi-Dirac equation with cutoff hard potentials", preprint, 2024.
A. The Boltzmann-Fermi-Dirac equation
C. Transfer of entropy inequalities
B. Entropy methods and relaxation to equilibrium
D. Relaxation to equilibrium for Boltzmann-Fermi-Dirac
\(f \equiv f_{t,x}(v)\) density of fermions
BFD equation:
Collision operator:
mass, momentum & energy
Pauli exclusion principle
quantum parameter \(\textcolor{purple}{\delta} > 0\)
2 fermions cannot occupy the same state
:
2. \(D_{\textcolor{purple}{\delta}}(g) = 0 \iff g = M_{\textcolor{purple}{\delta}} \), a Fermi-Dirac statistics:
characterization of equilibria
Boltzmann-Fermi-Dirac H Theorem
1. If \(f \equiv f_t(v)\) solves
\(2^{\rm nd}\) principle of thermodynamics
then
\(\searrow T°\)
\( T°=T_{\min}\)
or saturated state
Fermi-Dirac entropy:
- Existence & stability of solutions to homogeneous BFD for cutoff hard potentials
[Lu, Wennberg]
Existence and uniqueness of solutions to inhomogeneous BFD for cutoff kernels
[Dolbeault]
- Relaxation to equilibrium of such solutions:
either \(f_0 =\) or \(f_t \; \underset{t \to \infty}{\overset{L^1}{\rightharpoonup}}\)
Derivation of the equation from particles system (partially formal)
[Benedetto, Castella, Esposito, Pulvirenti]
at which rate?
saturated state
Fermi-Dirac stat.
entropy : \(\displaystyle H\)
equilibrium associated to \(f\): \(M^f\)
\(M^f = \argmin H \)
( of \(f\) )
"distance" to equilibrium
\(t \mapsto H(f_t) \; \searrow \)
Entropy dissipation \(D\)
\(D \) non-negative operator
Try to prove \(D(g) \gtrsim {H(g|M^g)}^{1+\alpha}\)
(functional inequality)
Entropy / entropy production inequality
To obtain \(H(f_t|M^{f_0}) \lesssim t^{-1/\alpha}\)
Try to prove \(D(g) \gtrsim H(g|M^g)\)
To obtain \(H(f_t|M^{f_0}) \lesssim e^{-Ct} \)
(Grönwall)
Csiszar-Kullback-Pinsker
Fermi-Dirac entropy
Boltzmann entropy
Equilibrium: Fermi-Dirac statistics
Equilibrium: Maxwellian
Fermi-Dirac entropy
Equilibrium: Fermi-Dirac statistics
Equilibrium: Maxwellian
entropy \(\displaystyle H : h \mapsto \int \Phi(h)\) \(\Phi\) \(\mathcal{C}^2\) st. convex
equilibrium
Boltzmann entropy
Toscani, Villani
Desvillettes, Villani
Alonso, Bagland Desvillettes, Lods
?
entropy inequality for classical Boltzmann
entropy inequality for Boltzmann-Fermi-Dirac
known
new!
(Toscani, Villani)
we know:
?
entropy inequality for Boltzmann
Fermi-Dirac dissipation of \(f\)
entropy inequality for Boltzmann-Fermi-Dirac
If
we want:
Boltzmann dissipation of \( \displaystyle \frac{f}{1-\delta f} \)
\( \gtrsim\)
whenever all terms make sense,
Boltzmann relative entropy to equilibrium of \(\displaystyle \frac{f}{1-\textcolor{purple}{\delta} f}\)
Fermi-Dirac relative entropy to equilibrium of \(f\)
Theorem.
[B.]
For all
such that
and
and
Let
Then \(R_g\) is decreasing on \(\R_+\).
Proposition.
take
then
and
Key elements:
Other technicalities:
general considerations
specific use of Fermi-Dirac features
\(\displaystyle H(f) = \int \Phi(f) \, \mathrm{d} v\) with \(\Phi\) \(\mathcal{C}^2\) s.t. convex
Remark: suited to obtain general Cszisar-Kullback inequalities
Link between entropy and equilibrium
Taylor representation of relative entropy to equilibrium
entropy:
Let
Then \(R_g\) is decreasing on \(\R_+\).
Proposition.
and
<proof on the blackboard>
Proposition.
[B.]
For all
such that
and
For Boltzmann (& Landau) equation:
entropy inequality for classical Boltzmann
entropy inequality for Boltzmann-Fermi-Dirac
with
If
then
Let \(\displaystyle H_0(f) = \int \Phi_0(f) \), \(\displaystyle H_1(f) = \int \Phi_1(f) \) with \(\Phi_0,\Phi_1\) \(\mathcal{C}^2\) s.t. convex.
\(p \in [1,\infty), \, k \geq 0\), and with \(C,\eta\) explicit and uniform in \(\delta\).
Theorem 1.
[B., Lods]
Let \(0\leqslant f^{\rm in} \in L^1_3(\R^3)\). Then \(\exists \delta^{\rm in} > 0\) such that \(\forall \delta \in (0,\delta^{\rm in})\), if \(f^{\delta} \) sol. to Boltzmann-Fermi-Dirac w/ cut-off hard potentials,
(\(\delta\) is the quantum parameter)
Proof's core ingredients:
then
Proof's strategy:
Theorem 2.
[B., Lods]
Let \(0\leqslant f^{\rm in} \in L^1_3(\R^3)\). Then \(\exists \,\mathbf{C}^{\rm in} > 0\) such that \(\forall \delta> 0\), if \(f^{\delta} \) sol. to Boltzmann-Fermi-Dirac with cut-off hard potentials,
independent of \(\delta \)
\(f_t^{\delta}\) "sub-solution" to an eq. resembling classical Boltzmann
\(\widetilde{Q}^+_0\) "adjoint" to \(Q^+_0\)
(almost) copycat proof of same fact for classical Boltzmann
[Alonso, Gamba]
then
Monoatomic
Polyatomic
Resonant
Fermions
Entropy
Conserved quantities
Equilibrium
Entropy
Equilibrium
Conserved quantities
st. convex
Lagrange multipliers
Functional to minimize
constraints
Minimizer
BONUS: general weighted \(L^p\) Csiszár-Kullback-Pinsker
General weighted \(L^p\) Csiszár-Kullback-Pinsker
Proposition.
(general entropy)
with \(\displaystyle H(f) = \int\Phi(f)\), \(\Phi \; \; \mathcal{C}^2\) st. convex, \(M^f\) equilibrium, and
For any \(f\), any \(p \in [1,2]\) and \(\varpi\) weight \(\geqslant 0\),
Corollary.
For any \(0\leq f \in L^1_2\cap L \log L(\R^3)\), \(p \in [1,2]\) and \(\varpi : \R^3 \to \R_+\),
(Boltzmann entropy)
with \(\displaystyle H_0(f) = \int f \log f\) and \(M_0^f\) Maxwellian.
[simplified]
[T. B.]
\(\mathrm{I}\). Boltzmann equation for polyatomic gases
\(\mathrm{II}\). Boltzmann equation for polyatomic gases with (quasi-)resonant collisions
\(\mathrm{III}\). Boltzmann-Fermi-Dirac equation
Bonus: weighted \(L^p\) Csiszar-Kullback-Pinsker inequalities
- General modelling framework
- Relationships between models
- Compactness result in resonant setting
- Modelling & study of quasi-resonant Boltzmann
- Entropy/entropy production inequalities via a transfer method
- Relaxation to equilibrium with explicit rate
w/ Lods
(Desvillettes)
w/ Bisi, Groppi
w/ Boudin, Mathiaud, Salvarani
(Boudin)