系外行星观测和统计研究

Exoplanet Detection & Statistics

祝伟

《天体物理前沿讲座》

2021年12月7日

我们在宇宙中是唯一的吗?

  • 既是一个哲学问题,也是一个科学问题
  • 德雷克公式(Drake Equation)

系外行星研究可以解答的问题

讲座大纲

  • 太阳系和行星形成模型

 

  • 系外行星的探测方法

 

  • 系外行星的统计分布

 

  • 总结和展望

Planet formation in one picture

Planet formation to scales

原行星盘存在的时间

Image credit: C. Mordasini

(~1,000 km)

Terrestrial planets formed after the gaseous disk is gone, through collisions among protoplanets.

(磁)流体力学过程,星子形成

Gaseous planets formed within the disk lifetime

星子

原行星

(行星胚胎)

岩石行星

气态巨行星

失控气体吸积

大碰撞

白雪宁

  • Terrestrial planets: gas wt%<<1%
  • Gaseous planets: gas wt%>~10%
  • Inner small planets & outer giant planets;
  • One system having planets of very diverse properties(!);
  • Dynamically cold (small eccentricity & mutual inclination);
  • ...

Planets known before 1995\(^*\)

* Ignoring the pulsar planets.

公转轨道半长轴(日地距离)

行星质量(地球质量)

Exoplanet Discoveries

Image from NASA Exoplanet Archive

视向速度法

凌星法

微引力透镜法

直接成像法

Planets known of today

Known planets around Sun-like stars, data from NASA Exoplanet Archive, figure adapted from Zhu & Dong (2021)

Transit (ground)

Transit (space)

Radial velocity

Microlensing

Imaging

如何探测系外行星?

How to detect planets around other stars?

How does solar system look like from outside?

'Pale Blue Dot' by Voyager 1 from 40 AU

Solar system seen from alpha centauri (1.3 pc)

旅行者1号“暗淡蓝点”照片

Earth: R_Earth, 300 K

100xR_Earth, 6000 K

10xR_Earth, 150 K

L \propto R^2 T^4
\frac{L_{\rm Jupiter}}{L_{\rm Sun}} = 4 \times 10^{-9} \\ \frac{L_{\rm Earth}}{L_{\rm Sun}} = 6 \times 10^{-10}

(In addition, planets are very close to the star.)

Can we see planets directly?

  • 年轻、距离主星较远的行星
  • 至今共探测到54颗系外行星
  • Star light must be suppressed
    • atmosphere turbulence \( \rightarrow \) Adaptive optics (AO) 自适应光学

HR 8799: planet brightness ~\(10^{-5}\) star

系外行星直接成像

https://www.dcsc.tudelft.nl/~mverhaegen/n4ci/gallery.htm

b

c

d

e

间接测量法:视向速度法(Radial velocity)

\( \rightarrow\) 谱线移动约\(10^{-8}\)倍的波长

Image credit: ESO

\( \frac{v}{c} = \frac{\Delta \lambda}{\lambda} \)

王雪凇

Radial velocity (RV) method

自1990年代起,电荷耦合器件CCD和计算机的使用极大地提高了天文观测的精度和效率。

第一颗类太阳恒星周围的行星:飞马座51b

2019年诺贝尔物理学奖:"for the discovery of an exoplanet orbiting a solar-type star."

Didier Queloz

Michel Mayor

热木星(hot Jupiters)

热木星

冷木星

1%

10%

如何形成热木星?

Image from Dawson & Johnson (2018)

间接测量法:凌星法(Transit)

Image credit: LCOGT

Transit 凌星法

探测要求:对大量恒星进行长时间高精度的测光观测

  • Transit depth = \(\frac{R_{\rm p}^2}{R_\star^2}\)
  • Transit duration = \(\frac{2R_\star}{v_{\rm p}}\)
公转周期 凌星深度 凌星时长
木星 13年 1% 1天
地球 1年 0.01% 12小时

轨道倾角\( i \lesssim R_\star/a = 1.7^\circ \left(\frac{a}{\rm AU}\right)^{-1} \)

Kepler mission (2009-2013)

K2 mission (2014-2019)

  • \(10^5\) target stars & 4-yr observations, how many Earth-like planets do we expect to detect?
  • 0 Earth-like planets, but 1000s of exoplanets!

天鹅座和天琴座区域约100平方度

超级地球(super Earth)

Know thy star, know thy planet

Chen & Kipping (2017)

LAMOST-Kepler Survey

California-Kepler Survey

Gaia mission

Abundant super Earths unpredicted by theoretical models

Mordasini et al. (2009) (see also Ida & Lin 2004)

凌星时刻变化(Transit Timing Variation)

  • 行星之间的相互作用导致凌星到达的时刻偏离严格的周期性。

Holman & Murray (2005), Agol et al. (2005), Holman et al. (2010)

系外行星的质量-半径关系

Figure from Hadden & Lithwick (2017)

(see also Wu & Lithwick 2011, Hadden & Lithwick 2014)

Photo-evaporation valley

Fulton et al. (2017)

Owen (2019)

(see also Owen & Wu 2017, Jin & Mordasini 2018)

Image credit: NASA

Kepler's discoveries

  • Unpredicted but abundant super Earths.
  • Atmosphere fraction of a few % \(\longrightarrow\) Early formation.
  • Typically super Earths & ~3 per system \(\longrightarrow\) Kepler planetary systems are massive.

Super Earths

间接测量法:微引力透镜 (Gravitational microlensing)

Paczynski (1986); Mao & Paczynski (1991)

\(t_{\rm E} \sim 30{\rm days} \left(\frac{M_{\rm L}}{M_\odot}\right)^{1/2} \)

\( t_q \sim 40{\rm min} \left(\frac{q}{10^{-6}}\right)^{1/2} \left( \frac{t_{\rm E}}{30 \rm days}\right) \)

背景恒星亮度

背景恒星

”透镜“星体

\( t_{\rm E} \)

\( t_q \)

毛淑德

Figure from Zhu & Dong (2021)

Microlensing probes cold planets

Cold Neptunes

行星微引力透镜事件的光变曲线

Animations from B. Scott Gaudi

Q:微引力透镜和凌星的区别是什么?

地面微引力透镜巡天观测: KMTNet

  • 3台1.6米口径望远镜,配备大视场;
  • 监测银河系中心方向~10\(^8\)颗恒星的亮度变化;
  • 探测效率:每年~3000例微引力透镜事件,从中发现>30颗 系外行星;
  • 探测极限: planet-to-star mass ratio \(q\sim10^{-5}\).
    • ref: Earth/Sun \(q=3\times10^{-6}\).

银河系中心

1 deg

Credit to: KASI, Gould et al. (2020)

Exoplanet statistics from microlensing

  • Cold Neptunes are more abundant than cold Jupiters.
  • Cold Neptunes are perhaps the most abundant?

Figures from Suzuki et al. (2016)

(see also Gould et al. 2010, Cassan et al. 2012, Clanton & Gaudi 2014, Udalski et al. 2018, Jung et al. 2019)

Microlensing@Tsinghua

  • Real-time alert & follow-up observations (e.g. TAP), data reduction;
  • Planet search, light curve modeling;

Yee, Zang, et al. (2021)

5 hr

Figure from 臧伟呈

Microlensing from space

  • Higher resolution:Individual stars resolved.
  • Deeper observations
    • More stars \(\rightarrow\) More microlensing events
    • Smaller stars \(\rightarrow\) Lower-mass planets

3'

9"

Images from Pietrukowicz et al. (2019)

Figure from Mao (2012)

Small-size stars

Intermediate-size stars

Large-size stars

Time in event unit

Magnification in brightness (log)

Microlensing from space

  • 中国空间站望远镜(CSST)
  • 美国Roman Telescope
  • 欧洲Euclid

Transit (ground)

Transit (space)

Radial velocity

Microlensing

Imaging

Hot Jupiters

Cold Jupiters

Super Earths

Cold Neptunes

Figure from Zhu & Dong (2021)

系外行星普查 (Exo-)Planet Demographics

  • Terrestrial planets: gas wt%<<1%, Gaseous planets: gas wt%>~10%
  • Inner small planets & outer giant planets;
  • One system having planets of very diverse properties(!);
  • Dynamically cold (small eccentricity & mutual inclination);
  • ...

Solar system vs. extra-solar systems

系外行星统计和系统构型

Exoplanet statistics & system architecture

Hot Jupiters

1%

Cold Jupiters

10%

Super Earths

30%

Cold Neptunes

Figure from Zhu & Dong (2021)

系外行星普查(Exoplanet demographics)

Transit (ground)

Transit (space)

Radial velocity

Microlensing

Imaging

Figure adapted from Zhu & Dong (2021)

行星多重性(multiplicity): 1+1>2

w/ known companions

w/o known companions

Hot Jupiters

Cold Jupiters

Super Earths

Cold Neptunes

  • Unpredicted but abundant super Earths.
  • Atmosphere fraction of a few % \(\longrightarrow\) Early formation.
  • Typically super Earths & ~3 per system \(\longrightarrow\) Kepler planetary systems are massive.

Super Earths

Kepler systems vs. Solar system

Forming Kepler planetary systems

Image credit: P. Armitage

  • 行星迁移模型(Disk-driven planet migration)

Pebble (\(\sim\) cm)

Pebble isolation mass (\(\sim10\,M_\oplus\))

Chris Ormel

  • 卵石吸积模型(Pebble accretion model)
P({\rm CJ}|{\rm SE}) \approx 33\% {\rm ~vs.~} P({\rm CJ})=10\%
  • 1/3的拥有超级地球的行星系统中同时也存在冷木星。
    • >50%, if [Fe/H]>0.
  • 拥有冷木星的行星系统几乎都存在超级地球!

内行星系统和外行星系统的强相关性Inner-outer correlation

\( P({\rm SE}|{\rm CJ}) \cdot P({\rm CJ}) = P({\rm CJ}|{\rm SE}) \cdot P({\rm SE}) \) \( \rightarrow P({\rm SE}|{\rm CJ})=100\% \)

Cold Jupiters

Super Earths

22 from Kepler (triangles) + 39 from RV (squares)

类太阳系行星系统的普遍性

  • 太阳系不存在超级地球 (70%).
  • 太阳系存在冷木星 (10%).

\( P({\rm CJ,~no~SE}) = P({\rm CJ}) \cdot [1-P({\rm SE}|{\rm CJ})] \)

  • Terrestrial planets: gas wt%<<1%, Gaseous planets: gas wt%>~10%
  • Inner small planets & outer giant planets;
  • One system having planets of very diverse properties(!);
  • Dynamically cold (small eccentricity & mutual inclination);
  • ...

Solar system vs. extra-solar systems

总结

  • 基于太阳系的行星形成模型无法解释探测到的系外行星
    • Close-in massive planets (hot Jupiters, super Earths);
    • Abundant planets with ~1%wt atmosphere;
    • Dynamically hot orbits.
  • 系外行星探测和统计
    • 单一方法的工作原理、成就和探测极限
      • RV finds relatively massive planets;
      • Transit finds close-in planets;
      • Microlensing detects distant planets;
    • 行星多重性提供更丰富的信息
      • The strong inner-outer correlation
  • Planet mass-radius relation \(\rightarrow\) constraint on composition;
  • Exoplanet atmosphere observations.

Future directions:

Exoplanet atmosphere characterization

James Webb Space Telescope (exp. 2021.12.18)

Future directions:

Observing planet formation

Figures from Andrews (2020)

Atacama Large Millimeter/submillimeter Array (ALMA)

系外行星研究@中国

  • 问题:第一颗利用中国自主设备探测到的太阳系外行星发现于哪一年?

系外行星研究@中国

中国太空站望远镜CSST、地球2.0凌星项目(ET)、近邻宜居行星巡天计划(CHES)、紫瞳、觅音、天邻

总结 & 展望

  • 基于太阳系的行星形成模型无法解释探测到的系外行星
    • Close-in massive planets (hot Jupiters, super Earths);
    • Abundant planets with ~1%wt atmosphere;
    • Dynamically hot orbits.
  • 系外行星探测和统计
    • 单一方法的工作原理、成就和探测极限
      • RV finds relatively massive planets;
      • Transit finds close-in planets;
      • Microlensing detects distant planets;
    • 行星多重性提供更丰富的信息
      • The strong inner-outer correlation
  • 展望:行星大气研究,原行星盘研究,中国未来的系外行星空间探测项目
  • Radial velocity

How to detect planets indirectly?

  • Transit
  • Astrometry
  • Microlensing

First detection: 1989/1995

# of detections: ~700

First detection: 2000

# of detections: >4000

# of detections: 0

(Gaia ~2024)

First detection: 2003

# of detections: ~50

Kepler systems are dynamically hot: large eccentricities

Transit singles have \(\sigma_e\approx0.3\), whereas transit multis have \(\sigma_e\approx0.05\) (Van Eylen et al. 2015, 2019, Xie et al. 2016, Mills et al. 2019).

Transit duration \(T\)

  • Fewer-planet systems are dynamically hotter.
  • Each system has on average 3 planets (average multiplicity).
  • Dynamical evolution may have reshaped the architecture.

Zhu et al., 2018

(see also He et al. 2020)

Kepler systems are dynamically hot

\( \sigma_i,~\sigma_e \propto k^\zeta \)

Implications to future observations

  • All-sky survey, bright stars
  • 27 days per sector
  • Looking for close-in planets around nearby stars

Transiting Exoplanet Survey Satellite

Huang et al., (2018) (see also Gandolfi et al. 2018)

Another similar system: HD 86226 (TOI-652.01)

5 M_\oplus\\ 6~{\rm d}
10 M_{\rm J}\\ 3~{\rm AU}\\ e=0.6

Image credit: NASA/TESS

  • \(\sim10^4\) planet detections, \(\sim10^3\) multi-planet systems.
  • Gaia+TESS+LAMOST: 100s of TESS-Gaia systems \(\rightarrow\) refining the inner-outer correlation.

(Gaia+RV: Better characterization of Gaia multi-planet systems.)

Gaia (& future mission) astrometry

《天体物理前沿讲座》报告

By Wei Zhu(祝伟)

《天体物理前沿讲座》报告

2021年秋季学期清华大学本科生课《天体物理前沿讲座》报告,75分钟报告时间+5分钟课间休息+15分钟提问讨论

  • 766