DFS
BFS
Problem
sub-Problem
sub-Problem
sub-Problem
sub-sub-Problem
sub-sub-Problem
sub-sub-sub-Problem
base-
problem
Search Order:
Search Order:
Problem
sub-Problem
sub-Problem
sub-Problem
sub-sub-Problem
sub-sub-Problem
sub-sub-Problem
sub-sub-Problem
Search Order:
Search Order:
A
/ \
B C
/ \ / \
D E F G
/ \
H I
DFS Search Order:
U, R, D, L
DFS Search Order:
U, R, D, L
BFS Search Order:
U, R, D, L
BFS Search Order:
U, R, D, L
DFS and BFS are both algorithms for searching TREE and GRAPH, but we will ONLY focus on trees, which is more common in interviews.
A
B
C
F
E
D
Given a binary tree, calculate its depth.
1
2
3
Depth: 3
1
2
3
4
Depth: 4
3
2
3
3
4
1
2
3
4
2
Depth: 4
Given a binary tree, calculate its depth.
public int depth(TreeNode root) {
if (root == null) {
return 0;
}
return Math.max(depth(root.left), depth(root.right)) + 1;
}
Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
1
2
2
3
3
4
4
False
1
2
3
4
True
3
2
3
3
4
Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
public boolean isBalanced(TreeNode root) {
if (root == null)
return true;
if (Math.abs(getDepth(root.left) - getDepth(root.right)) > 1)
return false;
return isBalanced(root.left) && isBalanced(root.right);
}
int getDepth(TreeNode root) {
if (root == null)
return 0;
return Math.max(getDepth(root.left), getDepth(root.right)) + 1;
}
Something wrong? Redundant recursions
Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
public boolean isBalanced(TreeNode root) {
return depth(root) != -1;
}
public int depth(TreeNode root) {
if (root == null) {
return 0;
}
int leftDepth = depth(root.left);
int rightDepth = depth(root.right);
if (leftDepth == -1 || rightDepth == -1 ||
Math.abs(leftDepth - rightDepth) > 1) {
return -1;
}
return Math.max(leftDepth, rightDepth) + 1;
}
Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center).
1 / \ 2 2 / \ / \ 3 4 4 3
True
1 / \ 2 2 \ \ 3 3
False
1 / \ 2 2 / \ / \ 4 3 4 3
False
1 / \ 2 2 / \ 3 3
True
Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center).
1 / \ 2 2 / \ / \ 3 4 4 3
True
1 / \ 2 2 \ \ 3 3
False
Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center).
public boolean isSymmetric(TreeNode root) {
if (root == null) {
return true;
}
return isSymmetric(root.left, root.right);
}
public boolean isSymmetric(TreeNode left, TreeNode right) {
if (left == null && right == null) {
return true;
}
if (left == null && right != null) {
return false;
}
if (left != null && right == null) {
return false;
}
if (left.val != right.val) {
return false;
}
return isSymmetric(left.left, right.right)
&& isSymmetric(left.right, right.left);
}
Given a binary tree, find its minimum depth.
The minimum depth is the number of nodes along the shortest path from the root node down to the nearest leaf node.
1 / \ 2 2 / \ / \ 3 4 4 3
3
1 / \ 2 2 / \ 3 4
2
1 / \ 2 2 / \ 3 3
3
Given a binary tree, find its minimum depth.
The minimum depth is the number of nodes along the shortest path from the root node down to the nearest leaf node.
Given a binary tree, find its minimum depth.
The minimum depth is the number of nodes along the shortest path from the root node down to the nearest leaf node.
public int minDepth(TreeNode root) {
if (root == null) {
return 0;
}
int leftDepth = minDepth(root.left);
int rightDepth = minDepth(root.right);
if (leftDepth == 0) {
return rightDepth + 1;
} else if (rightDepth == 0) {
return leftDepth + 1;
}
return Math.min(leftDepth, rightDepth) + 1;
}
Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all the values along the path equals the given sum.
5 / \ 4 8 / / \ 11 13 4 / \ \ 7 2 1
22: [5, 4, 11, 2]
3 / \ 2 6 / / \ 9 22 9 / \ \ 7 2 1
31: [3, 6, 22]
Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all the values along the path equals the given sum.
5 / \ 4 8 / / \ 11 13 4 / \ \ 7 2 1
22: [5, 4, 11, 2]
Knapsack:
Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all the values along the path equals the given sum.
5 / \ 4 8 / / \ 11 13 4 / \ \ 7 2 1
22: [5, 4, 11, 2]
public boolean hasPathSum(TreeNode root, int sum) {
if (root == null) {
return false;
}
if (root.left == null && root.right == null) {
if (sum == root.val) {
return true;
}
return false;
}
return hasPathSum(root.left, sum-root.val) ||
hasPathSum(root.right, sum-root.val);
}
Given a binary tree, find the maximum path sum.
For this problem, a path is defined as any sequence of nodes from some starting node to any node in the tree along the parent-child connections. The path does not need to go through the root.
5 / \ 4 8 / / \ 11 13 4 / \ \ 7 2 1
maxSum = 7 + 11 + 4 + 5 + 8 + 13 = 48
5 / \ 4 8 / / \ 11 13 4 / \ \ 7 2 1
Given a binary tree, find the maximum path sum.
For this problem, a path is defined as any sequence of nodes from some starting node to any node in the tree along the parent-child connections. The path does not need to go through the root.
5 / \ -4 -8
5 / \ 4 -8
5 / \ 4 8
5 / \ -4 8
Given a binary tree, find the maximum path sum.
For this problem, a path is defined as any sequence of nodes from some starting node to any node in the tree along the parent-child connections. The path does not need to go through the root.
Given a binary tree, find the maximum path sum.
For this problem, a path is defined as any sequence of nodes from some starting node to any node in the tree along the parent-child connections. The path does not need to go through the root.
int max_sum = Integer.MIN_VALUE;
public int maxPathSum(TreeNode root) {
if (root == null)
return 0;
max_sum = Integer.MIN_VALUE;
maxBranchSum(root);
return max_sum;
}
public int maxBranchSum(TreeNode root) {
if (root == null) {
return 0;
}
int leftSum = maxBranchSum(root.left);
int rightSum = maxBranchSum(root.right);
int branchMaxSum = root.val + Math.max(0, Math.max(leftSum, rightSum));
max_sum = Math.max(max_sum,
Math.max(branchMaxSum, leftSum + root.val + rightSum));
return branchMaxSum;
}
Given a binary tree, find the maximum path sum.
Use int[] to pass the maximum through the recursion
public static int maxPathSum(TreeNode root) {
if (root == null)
return 0;
int[] max = {Integer.MIN_VALUE};
maxBranchSum(root, max);
return max[0];
}
public static int maxBranchSum(TreeNode root, int[] max) {
if (root == null) {
return 0;
}
int leftSum = maxBranchSum(root.left, max);
int rightSum = maxBranchSum(root.right, max);
int branchMaxSum = root.val + Math.max(0, Math.max(leftSum, rightSum));
max[0] = Math.max(max[0], Math.max(branchMaxSum, leftSum + root.val + rightSum));
return branchMaxSum;
}
Given a 2D board and a word, find if the word exists in the grid.
The word can be constructed from letters of sequentially adjacent cell, where "adjacent" cells are those horizontally or vertically neighboring. The same letter cell may not be used more than once.
For example, given a board,
[
['A','B','C','E'],
['S','F','C','S'],
['A','D','E','E']
]
word = "ABCCED", -> returns true,
word = "SEE", -> returns true,
word = "ABCB", -> returns false.
public boolean exist(char[][] board, String word) {
if (board.length == 0 || board[0].length == 0)
return false;
boolean[][] flag = new boolean[board.length][board[0].length];
//for (int i = 0; i < board.length; i++) {
// Arrays.fill(flag[i], false);
//}
for (int i = 0; i < board.length; i++) {
for (int j = 0; j < board[0].length; j++) {
if (exist(board, i, j, word, 0, flag))
return true;
}
}
return false;
}
public boolean exist(char[][] board, int x, int y, String word, int index, boolean[][] flag) {
if (index == word.length())
return true;
if (x < 0 || y < 0 || x >= board.length || y >= board[0].length
|| flag[x][y] || board[x][y] != word.charAt(index))
return false;
int[] dx = {1, 0, -1, 0};
int[] dy = {0, 1, 0, -1};
flag[x][y] = true;
for (int i = 0; i < 4; i++) {
if (exist(board, x+dx[i], y+dy[i], word, index+1, flag))
return true;
}
flag[x][y] = false;
return false;
}
Note:
more than 1 recursion
share the flag
Given a string s, partition s such that every substring of the partition is a palindrome.
Return all possible palindrome partitioning of s.
Example:
Input: "aab"
Output: [ ["aa", "b"], ["a", "a", "b"] ]
Given a string s, partition s such that every substring of the partition is a palindrome.
Return all possible palindrome partitioning of s.
public List<List<String>> partition(String s) {
List<List<String>> results = new ArrayList<>();
partition(results, s, 0, new ArrayList<String>());
return results;
}
public void partition(List<List<String>> results, String s, int start,
List<String> path) {
if (start == s.length()) {
results.add(new ArrayList<>(path));
return;
}
for (int i = start + 1; i <= s.length(); i++) {
String sub = s.substring(start, i);
if (isPalindrome(sub)) {
path.add(sub);
partition(results, s, i, path);
path.remove(path.size() - 1);
}
}
}
public boolean isPalindrome(String s) {
for (int i = 0, j = s.length()-1; i < j; i++, j--) {
if (s.charAt(i) != s.charAt(j))
return false;
}
return true;
}
boolean[][] generatePalindrome(String s) {
int len = s.length();
boolean[][] m = new boolean[len][len];
for (int i = 0; i < len; i ++) {
m[i][i] = true;
}
for (int i = 0; i < len - 1; i ++) {
m[i][i+1] = s.charAt(i) == s.charAt(i+1);
}
for (int i = 2; i < len; i ++) {
for (int j = 0; j < len - i; j ++) {
m[j][j+i] = s.charAt(j) == s.charAt(j+i) && m[j+1][j+i-1];
}
}
return m;
}
You are given coins of different denominations and a total amount of money amount. Write a function to compute the fewest number of coins that you need to make up that amount. If that amount of money cannot be made up by any combination of the coins, return -1.
Example 1:
coins = [1, 2, 5], amount = 11
return 3 (11 = 5 + 5 + 1)
Example 2:
coins = [2], amount = 3
return -1.
You are given coins of different denominations and a total amount of money amount. Write a function to compute the fewest number of coins that you need to make up that amount. If that amount of money cannot be made up by any combination of the coins, return -1.
Two choices:
Use it or not -> inefficient
which one is the first to use?
static int min;
public int coinChange(int[] coins, int amount) {
Arrays.sort(coins);
min = Integer.MAX_VALUE;
if (helper(coins, amount, coins.length - 1, 0)) {
return min;
}
return -1;
}
public boolean helper(int[] coins, int rest, int current, int count) {
if (rest < 0) return false;
if (rest == 0) {
if (count < min) {
min = count;
}
return true;
}
if (count >= min) return false;
boolean result = false;
for (int j = current; j >= 0; j --) {
result = result || helper(coins, rest - coins[j], j, count + 1);
}
return result;
}
WRONG ANSWER! WHY?
How does || work?
static int min;
public int coinChange(int[] coins, int amount) {
Arrays.sort(coins);
min = Integer.MAX_VALUE;
if (helper(coins, amount, coins.length - 1, 0)) {
return min;
}
return -1;
}
public boolean helper(int[] coins, int rest, int current, int count) {
if (rest == 0) {
if (count < min) {
min = count;
}
return true;
}
if (current < 0 || rest < 0) return false;
if (count >= min) return false;
boolean result = false;
for (int i = rest / coins[current]; i >= 0; i --) {
if (helper(coins, rest - i * coins[current], current - 1, count + i)) {
result = true;
}
}
return result;
}
Still it won't pass all the test cases because it is not efficient. We will introduce a better solution in Dynamic Programming