Causal Dynamical Triangulations with CGAL

Adam Getchell

acgetchell@ucdavis.edu

University of California, Davis

CGAL Developers Conference, Nancy, Sept 29-October 2, 2015

Causal Dynamical Triangulations

A candidate theory of quantum gravity

CGAL

You are the experts!

Path Integral

Credit: NASA/WMAP Science team

Path Integral

\langle B|T|A\rangle=\int\mathcal{D}[g]e^{iS_{EH}}
BTA=D[g]eiSEH\langle B|T|A\rangle=\int\mathcal{D}[g]e^{iS_{EH}}
S_{EH}=\frac{1}{16\pi G_{N}}\int d^{4}x\sqrt{-g}(R-2\Lambda)
SEH=116πGNd4xg(R2Λ) S_{EH}=\frac{1}{16\pi G_{N}}\int d^{4}x\sqrt{-g}(R-2\Lambda)

Equations of Motion

\partial S = 0 \rightarrow R_{\mu\nu}-\frac{1}{2}Rg_{\mu\nu}=8\pi G_{N}T_{\mu\nu}
S=0Rμν12Rgμν=8πGNTμν\partial S = 0 \rightarrow R_{\mu\nu}-\frac{1}{2}Rg_{\mu\nu}=8\pi G_{N}T_{\mu\nu}

Ricci scalar

Cosmological constant

Ricci tensor

Ricci scalar

Stress-Energy tensor

Transition probability amplitude

Calculating the Path Integral

\langle B|T|A\rangle=\int\mathcal{D}[g]e^{iS_{EH}}
BTA=D[g]eiSEH\langle B|T|A\rangle=\int\mathcal{D}[g]e^{iS_{EH}}
S_{EH}=\frac{1}{16\pi G_{N}}\int d^{4}x\sqrt{-g}(R-2\Lambda)
SEH=116πGNd4xg(R2Λ) S_{EH}=\frac{1}{16\pi G_{N}}\int d^{4}x\sqrt{-g}(R-2\Lambda)

Almost impossible to calculate!

Calculating the Path Integral

Quickly gets complicated!

Perturbative sums, renormalization, etc.

CDT Path Integral

3D Delaunay Triangulation: 256 Timeslices, 7473 Vertices,  47021 Simplices

2D Icosahedron: 1 timeslice, 30 vertices, 20 Simplices

CDT Path Integral

\langle B|T|A\rangle=\sum\limits_{triangulations}\frac{1}{C(T)}e^{iS_{R}(T)}
BTA=triangulations1C(T)eiSR(T)\langle B|T|A\rangle=\sum\limits_{triangulations}\frac{1}{C(T)}e^{iS_{R}(T)}
S_{R}=\frac{1}{8\pi G_{N}}\left(\sum\limits_{hinges}A_{h}\delta_{h}-\Lambda\sum\limits_{simplices}V_{s}\right)
SR=18πGN(hingesAhδhΛsimplicesVs)S_{R}=\frac{1}{8\pi G_{N}}\left(\sum\limits_{hinges}A_{h}\delta_{h}-\Lambda\sum\limits_{simplices}V_{s}\right)

Inequivalent Triangulations

Regge Action

Partition Function

Transition probability amplitude

Calculating the CDT Path Integral

S_{R}=\frac{1}{8\pi G_{N}}\left(\sum\limits_{hinges}A_{h}\delta_{h}-\Lambda\sum\limits_{simplices}V_{s}\right)
SR=18πGN(hingesAhδhΛsimplicesVs)S_{R}=\frac{1}{8\pi G_{N}}\left(\sum\limits_{hinges}A_{h}\delta_{h}-\Lambda\sum\limits_{simplices}V_{s}\right)

Area of hinge

Volume of Simplex

Deficit Angle

Regge Action

CDT Action

\begin{array}{l} S^{(3)} &=& 2\pi k\sqrt{\alpha}N_1^{TL} \\ &+& N_3^{(3,1)}\left[-3k\text{arcsinh}\left(\frac{1}{\sqrt{3} \sqrt{4\alpha +1}}\right)-3k\sqrt{\alpha}\text{arccos}\left(\frac{2\alpha+1} {4\alpha+1}\right)-\frac{\lambda}{12}\sqrt{3\alpha+1}\right] \\ &+& N_3^{(2,2)}\left[2k\text{arcsinh}\left(\frac{2\sqrt{2}\sqrt{2\alpha+1}} {4\alpha +1}\right)-4k\sqrt{\alpha}\text{arccos}\left(\frac{-1}{4\alpha+1} \right)-\frac{\lambda}{12}\sqrt{4\alpha +2}\right] \end{array}
S(3)=2πkαN1TL+N3(3,1)[3karcsinh(134α+1)3kαarccos(2α+14α+1)λ123α+1]+N3(2,2)[2karcsinh(222α+14α+1)4kαarccos(14α+1)λ124α+2]\begin{array}{l} S^{(3)} &=& 2\pi k\sqrt{\alpha}N_1^{TL} \\ &+& N_3^{(3,1)}\left[-3k\text{arcsinh}\left(\frac{1}{\sqrt{3} \sqrt{4\alpha +1}}\right)-3k\sqrt{\alpha}\text{arccos}\left(\frac{2\alpha+1} {4\alpha+1}\right)-\frac{\lambda}{12}\sqrt{3\alpha+1}\right] \\ &+& N_3^{(2,2)}\left[2k\text{arcsinh}\left(\frac{2\sqrt{2}\sqrt{2\alpha+1}} {4\alpha +1}\right)-4k\sqrt{\alpha}\text{arccos}\left(\frac{-1}{4\alpha+1} \right)-\frac{\lambda}{12}\sqrt{4\alpha +2}\right] \end{array}

3D

CDT Action

4D

\begin{array}{l} S^{(4)}\!\! &=&\!\! \frac{k \pi}{2} \sqrt{4\alpha +1}\ N_{2}^{TL} + N_{4}^{(4,1)}\cdot \\ && \!\!\Biggl( -\sqrt{3} k\ {arcsinh} \frac{1}{2\sqrt{2}\sqrt{3\alpha +1}} -\frac{3 k}{2} \sqrt{4\alpha +1} \arccos\frac{2\alpha +1}{2 (3\alpha +1)} -\lambda \frac{\sqrt{8\alpha +3}}{96} \Biggr) \\ &+&\!\! N_{4}^{(3,2)} \Biggl( \frac{\sqrt{3} k}{4}\ {arcsinh}\frac{\sqrt{3}\sqrt{12 \alpha +7}} {2 (3 \alpha+1)} - \frac{3 k}{4} \sqrt{4\alpha +1}\\ &&\!\!\biggl( 2\arccos\frac{-1}{2\sqrt{2}\sqrt{2\alpha +1}\sqrt{3\alpha +1}} + \arccos\frac{4\alpha +3}{4 (2\alpha +1)}\biggr) -\lambda \frac{\sqrt{12\alpha +7}}{96}\Biggr) \end{array}
S(4)=kπ24α+1 N2TL+N4(4,1)(3k arcsinh1223α+13k24α+1arccos2α+12(3α+1)λ8α+396)+N4(3,2)(3k4 arcsinh312α+72(3α+1)3k44α+1(2arccos1222α+13α+1+arccos4α+34(2α+1))λ12α+796)\begin{array}{l} S^{(4)}\!\! &=&\!\! \frac{k \pi}{2} \sqrt{4\alpha +1}\ N_{2}^{TL} + N_{4}^{(4,1)}\cdot \\ && \!\!\Biggl( -\sqrt{3} k\ {arcsinh} \frac{1}{2\sqrt{2}\sqrt{3\alpha +1}} -\frac{3 k}{2} \sqrt{4\alpha +1} \arccos\frac{2\alpha +1}{2 (3\alpha +1)} -\lambda \frac{\sqrt{8\alpha +3}}{96} \Biggr) \\ &+&\!\! N_{4}^{(3,2)} \Biggl( \frac{\sqrt{3} k}{4}\ {arcsinh}\frac{\sqrt{3}\sqrt{12 \alpha +7}} {2 (3 \alpha+1)} - \frac{3 k}{4} \sqrt{4\alpha +1}\\ &&\!\!\biggl( 2\arccos\frac{-1}{2\sqrt{2}\sqrt{2\alpha +1}\sqrt{3\alpha +1}} + \arccos\frac{4\alpha +3}{4 (2\alpha +1)}\biggr) -\lambda \frac{\sqrt{12\alpha +7}}{96}\Biggr) \end{array}

CDT Path Integral

\langle B|T|A\rangle=\sum\limits_{triangulations}\frac{1}{C(T)}e^{iS_{R}(T)}
BTA=triangulations1C(T)eiSR(T)\langle B|T|A\rangle=\sum\limits_{triangulations}\frac{1}{C(T)}e^{iS_{R}(T)}

CDT Path Integral

\langle B|T|A\rangle=\sum\limits_{triangulations}\frac{1}{C(T)}e^{-S_{R}(T)}
BTA=triangulations1C(T)eSR(T)\langle B|T|A\rangle=\sum\limits_{triangulations}\frac{1}{C(T)}e^{-S_{R}(T)}

Wick rotation

Metropolis-Hastings

\langle B|T|A\rangle=\sum\limits_{triangulations}\frac{1}{C(T)}e^{-S_{R}(T)}
BTA=triangulations1C(T)eSR(T)\langle B|T|A\rangle=\sum\limits_{triangulations}\frac{1}{C(T)}e^{-S_{R}(T)}

Inequivalent Triangulations

Partition Function

Wick rotation

  1. Pick an ergodic (Pachner) move
  2. Make that move with a probability of a1a2, where:
a_{1}=\frac{move[i]}{\sum\limits_{i}move[i]}
a1=move[i]imove[i]a_{1}=\frac{move[i]}{\sum\limits_{i}move[i]}
a_{2}=e^{\Delta S}
a2=eΔSa_{2}=e^{\Delta S}

3D Ergodic Moves

(2,3) & (3,2)

(4,4)

(2,6) & (6,2)

Simplices involved

Move name

(3,1) & (2,2)

2 (1,3) & 2 (3,1)

(1,3) & (3,1)

4D Ergodic Moves

(2,4) & (4,2)

(3,3)

(4,6) & (6,4)

(2,8) & (8,2)

Does CDT have a Newtonian Limit?

CDT looks like GR at cosmological scales, does it have a Newtonian limit?

F=G_{N}\frac{m_{1}m_{2}}{r^2}
F=GNm1m2r2F=G_{N}\frac{m_{1}m_{2}}{r^2}

At first glance, this is hard:

  • CDT is not well-suited for approximating smooth classical space-times
  • We don't have the time or resolution to watch objects fall

A Trick from GR

ds^{2} = e^{2\lambda}dt^{2} - e^{2\left(\nu-\lambda\right)}\left(dr^{2}+dz^{2}\right) - r^{2}e^{-2\lambda}d\phi^{2}
ds2=e2λdt2e2(νλ)(dr2+dz2)r2e2λdϕ2 ds^{2} = e^{2\lambda}dt^{2} - e^{2\left(\nu-\lambda\right)}\left(dr^{2}+dz^{2}\right) - r^{2}e^{-2\lambda}d\phi^{2}

The static axisymmetric Weyl metric:

With two-body Chazy-Curzon (circa 1924) solutions of the Einstein field equations:

\lambda(r,z)=-\frac{\mu_1}{r_1}-\frac{\mu_2}{r_2}
λ(r,z)=μ1r1μ2r2\lambda(r,z)=-\frac{\mu_1}{r_1}-\frac{\mu_2}{r_2}
\nu(r,z)=\frac{1}{2}\frac{\mu_{1}^{2}r^2}{r_{1}^{4}}-\frac{1}{2}\frac{\mu_{2}^{2}r^2}{r_{2}^{4}}+\frac{2\mu_1\mu_2}{(z-z_2)^2}\left[\frac{r^2+(z-z_1)(z-z_2)}{r_{1}r_{2}}-1\right]
ν(r,z)=12μ12r2r1412μ22r2r24+2μ1μ2(zz2)2[r2+(zz1)(zz2)r1r21]\nu(r,z)=\frac{1}{2}\frac{\mu_{1}^{2}r^2}{r_{1}^{4}}-\frac{1}{2}\frac{\mu_{2}^{2}r^2}{r_{2}^{4}}+\frac{2\mu_1\mu_2}{(z-z_2)^2}\left[\frac{r^2+(z-z_1)(z-z_2)}{r_{1}r_{2}}-1\right]
r_1=\sqrt{r^2+(z-z_1)^2}
r1=r2+(zz1)2r_1=\sqrt{r^2+(z-z_1)^2}

Leads to a strut:

With a stress:

That can be integrated to get the Newtonian force!

\nu(0,z)=\frac{4\mu_{1}\mu_{2}}{z_{1}^2-z_{2}^2}
ν(0,z)=4μ1μ2z12z22\nu(0,z)=\frac{4\mu_{1}\mu_{2}}{z_{1}^2-z_{2}^2}
T_{zz}=\frac{1}{8\pi G_{N}}\left(1-e^{-\nu(r,z)}\right)2\pi\delta
Tzz=18πGN(1eν(r,z))2πδT_{zz}=\frac{1}{8\pi G_{N}}\left(1-e^{-\nu(r,z)}\right)2\pi\delta
F=\int T_{zz}dA=\frac{1}{4G_{N}}\left(1-e^{-\nu(r,z)}\right)=G_{N}\frac{m_1m_2}{z_1^2-z_2^2}\:\text{for}\:\mu_i=G_Nm_i
F=TzzdA=14GN(1eν(r,z))=GNm1m2z12z22forμi=GNmiF=\int T_{zz}dA=\frac{1}{4G_{N}}\left(1-e^{-\nu(r,z)}\right)=G_{N}\frac{m_1m_2}{z_1^2-z_2^2}\:\text{for}\:\mu_i=G_Nm_i

A Trick from GR

ds^{2} = e^{2\lambda}dt^{2} - e^{2\left(\nu-\lambda\right)}\left(dr^{2}+dz^{2}\right) - r^{2}e^{-2\lambda}d\phi^{2}
ds2=e2λdt2e2(νλ)(dr2+dz2)r2e2λdϕ2 ds^{2} = e^{2\lambda}dt^{2} - e^{2\left(\nu-\lambda\right)}\left(dr^{2}+dz^{2}\right) - r^{2}e^{-2\lambda}d\phi^{2}
g_{\mu\nu}=\left(\begin{array}{cccc} e^{2\lambda} & 0 & 0 & 0\\ 0 & -e^{2\left(\nu-\lambda\right)} & 0 & 0\\ 0 & 0 & -e^{2\left(\nu-\lambda\right)} & 0\\ 0 & 0 & 0 & -\frac{r^{2}}{e^{2\lambda}} \end{array}\right)
gμν=(e2λ0000e2(νλ)0000e2(νλ)0000r2e2λ)g_{\mu\nu}=\left(\begin{array}{cccc} e^{2\lambda} & 0 & 0 & 0\\ 0 & -e^{2\left(\nu-\lambda\right)} & 0 & 0\\ 0 & 0 & -e^{2\left(\nu-\lambda\right)} & 0\\ 0 & 0 & 0 & -\frac{r^{2}}{e^{2\lambda}} \end{array}\right)
\Gamma_{\mu\nu}^{\lambda}=\frac{1}{2}g^{\lambda\sigma}\left(\partial_{\mu}g_{\nu\sigma}+\partial_{\nu}g_{\sigma\mu}-\partial_{\sigma}g_{\mu\nu}\right)
Γμνλ=12gλσ(μgνσ+νgσμσgμν)\Gamma_{\mu\nu}^{\lambda}=\frac{1}{2}g^{\lambda\sigma}\left(\partial_{\mu}g_{\nu\sigma}+\partial_{\nu}g_{\sigma\mu}-\partial_{\sigma}g_{\mu\nu}\right)
R_{\sigma\mu\nu}^{\rho}=\partial_{\mu}\Gamma_{\nu\sigma}^{\rho}-\partial_{\nu}\Gamma_{\mu\sigma}^{\rho}+\Gamma_{\mu\lambda}^{\rho}\Gamma_{\nu\sigma}^{\lambda}-\Gamma_{\nu\lambda}^{\rho}\Gamma_{\mu\sigma}^{\lambda}
Rσμνρ=μΓνσρνΓμσρ+ΓμλρΓνσλΓνλρΓμσλR_{\sigma\mu\nu}^{\rho}=\partial_{\mu}\Gamma_{\nu\sigma}^{\rho}-\partial_{\nu}\Gamma_{\mu\sigma}^{\rho}+\Gamma_{\mu\lambda}^{\rho}\Gamma_{\nu\sigma}^{\lambda}-\Gamma_{\nu\lambda}^{\rho}\Gamma_{\mu\sigma}^{\lambda}
R_{\mu\nu}=R^{\rho}_{\mu\rho\nu}
Rμν=RμρνρR_{\mu\nu}=R^{\rho}_{\mu\rho\nu}
R=R^{\mu}_{\mu}
R=RμμR=R^{\mu}_{\mu}
R_{\mu\nu}-\frac{1}{2}Rg_{\mu\nu}=8\pi G_{N}T_{\mu\nu}
Rμν12Rgμν=8πGNTμνR_{\mu\nu}-\frac{1}{2}Rg_{\mu\nu}=8\pi G_{N}T_{\mu\nu}

Metric

Affine connection

Riemann tensor

Ricci tensor & Ricci scalar

Einstein field equations

My Work

Find the Newtonian Limit, if it exists

  • Test case, no limit in 3D

Re-implement CDT

  • Rewrite in modern C++
  • Use well-known libraries

My Work

Use current tools

Easy to evaluate, use, and contribute

My Work

Mass = Epp quasilocal energy

E_E\equiv\frac{1}{8\pi G_N}\int_{\Omega}d^2x\sqrt{|\sigma|}\left(\sqrt{k^2-l^2}-\sqrt{\bar{k}^2-\bar{l}^2}\right)
EE18πGNΩd2xσ(k2l2k¯2l¯2)E_E\equiv\frac{1}{8\pi G_N}\int_{\Omega}d^2x\sqrt{|\sigma|}\left(\sqrt{k^2-l^2}-\sqrt{\bar{k}^2-\bar{l}^2}\right)
l\equiv\sigma^{\mu\nu}l_{\mu\nu}
lσμνlμνl\equiv\sigma^{\mu\nu}l_{\mu\nu}
k\equiv\sigma^{\mu\nu}k_{\mu\nu}
kσμνkμνk\equiv\sigma^{\mu\nu}k_{\mu\nu}
  • In 1+1 simplicial geometry, extrinsic curvature at a vertex is proportional to the number of connected triangles

 

  • In 2+1 simplicial geometry, extrinsic curvature at an edge is proportional to the number of connected tetrahedra

 

  • In 3+1 simplicial geometry, extrinsic curvature at a face is proportional to the number of connected pentachorons (4-simplices)

My Work

Non-Euclidean Distance

  • Calculate single-source shortest path between the two masses using Bellman-Ford algorithm in O(VE)
  • Modify allowed moves to not permit too many successive moves which increase or decrease distance between masses (hold relatively fixed)

 

Hausdorff Distance(?)

  • Calculate Voronoi diagram of Delaunay triangulation
  • Find minimal Hausdorff distance in diagram for sets in O((m+n)^6 log(mn)) (Huttenlocher, Kedem, and Kleinberg)

Fast foliated Delaunay Triangulations in CGAL

8 timeslices, 68 vertices,  619 faces, 298 simplices

Creation time: 0.043336s

(MacBook Pro Retina, Mid 2012)

Fast foliated Delaunay Triangulations in CGAL

/// @param[in] simplices  The number of desired simplices in the triangulation
/// @param[in] timeslices The number of timeslices in the triangulation
/// @returns A std::unique_ptr to the foliated Delaunay triangulation
auto inline make_triangulation(const unsigned simplices,
                               const unsigned timeslices) {
  std::cout << "Generating universe ... " << std::endl;

#ifdef CGAL_LINKED_WITH_TBB
// Construct the locking data-structure, using the bounding-box of the points
  auto bounding_box_size = static_cast<double>(timeslices+1);
  Delaunay::Lock_data_structure locking_ds(
  CGAL::Bbox_3(-bounding_box_size, -bounding_box_size, -bounding_box_size,
                bounding_box_size, bounding_box_size, bounding_box_size), 50);
  Delaunay universe(K(), &locking_ds);
#else
  Delaunay universe;
#endif

  auto universe_ptr = std::make_unique<decltype(universe)>(universe);

  auto causal_vertices = make_foliated_sphere(simplices, timeslices);

  insert_into_triangulation(universe_ptr, causal_vertices);

  fix_triangulation(universe_ptr);

  // This isn't as expensive as it looks thanks to return value optimization
  return universe_ptr;
}  // make_triangulation()

Fast foliated Delaunay Triangulations in CGAL

256 timeslices, 222,132 vertices,  2,873,253 faces, 1,436,257 simplices

Creation time: 284.596s

(MacBook Pro Retina, Mid 2012)

Remaining Work

  • Implement remaining 3D Ergodic moves
  • 4D Ergodic moves
  • Restore Delaunay triangulation after moves(?)
  • HDF5 format data output
  • Improve Visualization pipeline
  • Build data analysis pipeline
  • Make faster
  • Parallelize (BOINC, Docker, etc)

Interested? Please Join!

Thank You!

[1] The CGAL Project. CGAL User and Reference Manual. CGAL Editorial Board, 4.6.3 edition, 2015.

 

[2] Steve Carlip. Why Quantum Gravity is Hard. Conceptual and Technical Challenges for Quantum Gravity, Rome, September 2014.

 

[3] J. Ambjorn, J. Jurkiewicz, and R. Loll. “Dynamically Triangulating Lorentzian Quantum Gravity.” Nuclear Physics B 610, no. 2001 (May 27, 2001): 347–82.

 

[4] Rajesh Kommu. “A Validation of Causal Dynamical Triangulations.” arXiv:1110.6875, October 31, 2011. http://arxiv.org/abs/1110.6875.

Made with Slides.com