Institute of Theoretical and Applied Informatics, Polish Academy of Sciences;
Ludmila Botelho, Adam Glos, Akash Kundu, Jarosław Adam Miszczak, Özlem Salehi, and Zoltan Zimboras
Noisy
Intermediate-
Scale
Quantum computing
Where is \(\omega\)?
N
What are prime factors of
?
$$ H = - \sum_{i > j} J_{ij}Z_i Z_j - \sum _i h_iZ_i, $$
2-Local Ising model
Pauli \(Z\) Gates on \(i\)-th qubit
Initialize the annelear: \(|+^n\rangle\)
$$ H_{QA}(t) = g(t/ \tau )H_{\text{mix}}+ h(t/ \tau)H$$
Adiabatic evolution
Ground state of H (hopefully)
$$ | 0110\dots 010\rangle$$
Ground state of:
$$ H_{\text{mix}} = \sum_i X_i$$
\(g(t/ \tau )H_{\text{mix}}+ h(t/ \tau)H\)
Trotter Formula
Quantum Approximate Optimization Algorithm
$$|p,r\rangle = \prod_{i=1}^k \exp(-\mathrm{i} p_iH_{\rm mix})\exp(-\mathrm{i} r_iH) |+^n\rangle $$
$$ A\sum_{t} \left(\sum_v b_{tv} -1\right)^2 + A\sum_{v} \left(\sum_t b_{tv} -1\right)^2 + B\sum_{t,v,w} W_{v,w}b_{t,v}b_{t+1,w}$$
QUBO formulation for n cities
\(n^2 \; \rightarrow \;n!/2^{n^2} \approx2^{-n^2}\)
\(n\log_2 n \; \; \rightarrow \; n!/2^{n\log_2 n} \approx 2^{-\Theta(n)}\)
VS
Glos, Adam, Aleksandra Krawiec, and Zoltán Zimborás. "Space-efficient binary optimization for variational computing." arXiv preprint arXiv:2009.07309 (2020).
Cost of route:
\(\pi: \{ 0,\cdots,n-1\} \rightarrow \{ 0,\cdots,n-1\} \)
\(\sum_{t=0}^{n-1}W_{\pi(t),\pi(t+1)} =\sum_{t,v,w}W_{v,w} \delta(\pi(t),v) \delta(\pi(t+1),w) \)
city visited at time \( t\)
$$0$$
$$1$$
$$2$$
$$3$$
$$4$$
\(W_{1,2}\)
$$0$$
$$1$$
$$2$$
$$3$$
$$4$$
\(W_{1,2}\)
time \( t\)
$$0$$
$$1$$
$$2$$
$$3$$
$$4$$
$$00001 $$
$$10000 $$
$$000$$
$$100$$
binary
one-hot
$$00010 $$
$$00100 $$
$$01000 $$
$$001$$
$$010$$
$$011$$
QUBO
HOBO
HOBO
QUBO
HOBO
\(|0 \rangle\)
\(|0 \rangle\)
\(|0 \rangle\)
\(|0 \rangle\)
\(|0 \rangle\)
\(|0 \rangle\)
\(|0 \rangle\)
\(|0 \rangle\)
\(V\)
\(V^\dagger\)
QUBO
\(V\)
\(V\)
\(V\)
\(V^\dagger\)
\(V^\dagger\)
\(V^\dagger\)
\(H_{\text{mix}}\)
\(H_{\text{mix}}\)
\(H_{\text{mix}}\)
\(H_{\text{mix}}\)
Success probability of measuring the quantum state on the feasible space (left). The area spans the mean energy \( \pm \) standard deviation over 40 instances of TSP. Simulation were done for TSP instances with four cites.
Initialize the quantum state
\(|0 \rangle\)
\(|0 \rangle\)
\(|0 \rangle\)
\(|0 \rangle\)
\(|0 \rangle\)
\(|0 \rangle\)
\(|0 \rangle\)
\(|0 \rangle\)
\(V\)
\(V^\dagger\)
QUBO
\(V\)
\(V\)
\(V\)
\(V^\dagger\)
\(V^\dagger\)
\(V^\dagger\)
\(H_{\text{mix}}\)
\(H_{\text{mix}}\)
\(H_{\text{mix}}\)
\(H_{\text{mix}}\)
Available for Quantum Alternating Operator Ansatz
\(V\)
\(V^\dagger\)
QUBO
\(V\)
\(V\)
\(V\)
\(V^\dagger\)
\(V^\dagger\)
\(V^\dagger\)
\(H_{\text{mix}}\)
\(H_{\text{mix}}\)
\(H_{\text{mix}}\)
\(H_{\text{mix}}\)
Post-Selection
\(V\)
\(V^\dagger\)
QUBO
\(V\)
\(V\)
\(V\)
\(V^\dagger\)
\(V^\dagger\)
\(V^\dagger\)
\(H_{\text{mix}}\)
\(H_{\text{mix}}\)
\(H_{\text{mix}}\)
\(H_{\text{mix}}\)
\(V\)
\(V^\dagger\)
QUBO
\(V\)
\(V\)
\(V\)
\(V^\dagger\)
\(V^\dagger\)
\(V^\dagger\)
PS
PS
PS
PS
APPLICABLE FOR OTHER QAOA SCHEMES!
Comparison of various error-mitigation methods. The red dashed line corresponds to "do nothing" approach. The blue solid line describes the effect with the post-selection at the end only. Finally, the green dotted line includes post-selection for both final measurement and mid-circuit measurement. Areas span the minimum and maximum value obtained. Top row shows the deviation in the energy, relative to the scenario proposed in the paper. Bottom row shows the probability of accepting circuit run.
\( \frac{E - E_{pure}}{E_{ours} - E_{pure}}\)
Hubbard model:
Ansatz:
We detect transfer between infeasible and feasible space