Bence Bakó, Adam Glos, Özlem Salehi, Zoltán Zimborás
$$|p,r\rangle = \prod_{i=1}^k \exp(-\mathrm{i} p_iH_{\rm mix})\exp(-\mathrm{i} r_iH) |+^n\rangle $$
XY-QAOA for TSP
mixer: \(X_iX_j + Y_iY_j\)
\(H = - \sum_{i,j}w_{i,j}Z_i Z_j - \sum_i w_i Z_I\)
From Hoeffding Theorem
Better than the state-of-the-art way for VQE
\(H = - \sum_{i,j}w_{i,j}Z_i Z_j - \sum_i w_i Z_I\)
Alternative
\(O(n^2)\) gates on LNN!
\(b_i \leftarrow \frac{1-s_i}{2}\)
SIM-QAOA
Fuchs-QAOA
Fuchs-QAOA
Fuchs-QAOA
$$ A\sum_{t} \left(\sum_v b_{tv} -1\right)^2 + A\sum_{v} \left(\sum_t b_{tv} -1\right)^2 + B\sum_{t} \sum_{v,w} W_{v,w}b_{t,v}b_{t+1,w}$$
None of the encodings matches the "natural optimal" value, ...
..., but none can! Each red block needs whole information about cost matrix - \(O(n^3)\) gates
The idea can be generalized, so far we managed to use it for