Certifying Bimanual RRT Motion Plans in a Second

Alexandre Amice

Peter Werner

Russ Tedrake

Certifying Bimanual RRT Motion Plans in a Second​​

$$a^{T}(t)x + b(t) > 0,~ \forall x \in \mathcal{A}(t),~ t \in [0,1]$$

$$a^{T}(t)x + b(t) < 0,~ \forall x \in \mathcal{B}(t),~ t \in [0,1]$$

Find \(a(t)\), \(b(t)\) such that

# of Sos Program 25830
Average Time to Certify Edge 0.299 s
Time to Certify Goal Plan 1.211 s

Alexandre Amice

Peter Werner

Russ Tedrake

Motivation: Rigorous Collision Checking

Motivation: Rigorous Collision Checking

Motivation: Rigorous Collision Checking

  • Correct

  • Discriminating

  • General

  • Verifiable

  • Fast

Results: Certifying A Bimanual RRT

# Of RRT Edges 105
Average Time to Certify Edge 0.299 s
Time to Certify Goal Plan 1.211 s

Results: Certifying Piecewise Cubic Paths

# of Cubic Segments 30
Average Time to Certify a Segment 0.317 s
Time to Certify Plan 9.21 s

$$a^{T}x + b > 0,~ \forall x \in \mathcal{A}$$

$$a^{T}x + b < 0,~ \forall x \in \mathcal{B}$$

Find \(a\), \(b\) such that

Certifying Non-Collision

$$a^{T}x + b > 0,~ \forall x \in \mathcal{A}$$

$$a^{T}x + b < 0,~ \forall x \in \mathcal{B}$$

Find \(a\), \(b\) such that

Certifying Non-Collision

$$a^{T}(t)x + b(t) > 0,~ \forall x \in \mathcal{A}(t),~ t \in [0,1]$$

$$a^{T}(t)x + b(t) < 0,~ \forall x \in \mathcal{B}(t),~ t \in [0,1]$$

Find \(a(t)\), \(b(t)\) such that

Certifying Non-Collision

A Quick Primer on Sums-of-Squares

Definition: \(p(x)\) is SOS if \(p(x) = \sum_{i} q_{i}^{2}(x)\)

Example: 

$$x^{4}-4x^{3}+5x^{2}+6x + 9 =$$

$$(x^{2}-2x)^{2} + (x+3)^{2} = $$

$$ \begin{bmatrix} 1 \\ x \\ x^{2} \end{bmatrix}^{T} \begin{bmatrix} 9 &3 & 0 \\3 & 5 & -2 \\ 0 & -2 & 1\end{bmatrix} \begin{bmatrix} 1 \\ x \\ x^{2}\end{bmatrix}$$

A Quick Primer on Sums-of-Squares

Definition: \(p(x)\) is SOS if \(p(x) = \sum_{i} q_{i}^{2}(x)\)

Example: 

$$x^{4}-4x^{3}+5x^{2}+6x + 9 =$$

$$(x^{2}-2x)^{2} + (x+3)^{2} = $$

$$ \begin{bmatrix} 1 \\ x \\ x^{2} \end{bmatrix}^{T} \begin{bmatrix} 9 &3 & 0 \\3 & 5 & -2 \\ 0 & -2 & 1\end{bmatrix} \begin{bmatrix} 1 \\ x \\ x^{2}\end{bmatrix}$$

Theorem: \(p(x)\) is SOS if and only if \(\exists Q \succeq 0\) such that $$p(x) = \begin{bmatrix} 1 \\ x \\ \vdots \\ x^{d} \end{bmatrix}^{T} Q \begin{bmatrix} 1 \\ x \\ \vdots \\ x^{d} \end{bmatrix}$$

Checking the \(p(x)\) is SOS is a Convex, Semidefinite Program

A Quick Primer on Sums-of-Squares

Definition: \(p(x)\) is SOS if \(p(x) = \sum_{i} q_{i}^{2}(x)\)

Example: $$x^{4}-4x^{3}+5x^{2}+6x + 9 =$$ $$(x^{2}-2x)^{2} + (x+3)^{2} = $$

$$ \begin{bmatrix} 1 \\ x \\ x^{2} \end{bmatrix}^{T} \begin{bmatrix} 9 &3 & 0 \\3 & 5 & -2 \\ 0 & -2 & 1\end{bmatrix} \begin{bmatrix} 1 \\ x \\ x^{2}\end{bmatrix}$$

Theorem: \(p(x)\) is SOS if and only if \(\exists Q \succeq 0\) such that $$p(x) = \begin{bmatrix} 1 \\ x \\ \vdots \\ x^{d} \end{bmatrix}^{T} Q \begin{bmatrix} 1 \\ x \\ \vdots \\ x^{d} \end{bmatrix}$$

A Quick Primer on Sums-of-Squares

Definition: \(p(x)\) is SOS if \(p(x) = \sum_{i} q_{i}^{2}(x)\)

Theorem: \(p(x)\) is SOS if and only if \(\exists Q \succeq 0\) such that $$p(x) = \begin{bmatrix} 1 \\ x \\ \vdots \\ x^{d} \end{bmatrix}^{T} Q \begin{bmatrix} 1 \\ x \\ \vdots \\ x^{d} \end{bmatrix}$$

Checking the \(p(x)\) is SOS is a Convex, Semidefinite Program

Positive Functions on An Interval

Theorem (Markov-Lucasz): A univariate \(p(t) \geq 0 ~\forall t \in [0,1]\) if and only if there exists \(\lambda\) and \(\nu\) which are SOS such that $$p(t) = \begin{cases} \lambda (t) + t(1-t) \nu (t)  & deg(p) = 2d \\ t \lambda (t) + (1-t) \nu (t) & \deg(p) = 2d + 1 \end{cases}$$

and

$$deg(\lambda) \leq 2d~~, deg(\nu)= \begin{cases} 2d-2 & deg(p) = 2d \\ 2d & deg(p) = 2d+1\end{cases}$$

Positive Functions on An Interval

Theorem (Markov-Lucasz): a univariate \(p(t) \geq 0 ~\forall t \in [0,1]\) if and only if there exists \(\lambda\) and \(\nu\) which are SOS such that $$p(t) = \begin{cases} \lambda (t) + t(1-t) \nu (t)  & deg(p) = 2d \\ t \lambda (t) + (1-t) \nu (t) & \deg(p) = 2d + 1 \end{cases}$$

and

$$deg(\lambda) \leq 2d~~, deg(\nu)= \begin{cases} 2d-2 & deg(p) = 2d \\ 2d & deg(p) = 2d+1\end{cases}$$

$$a^{T}(t)x + b(t) > 0,~ \forall x \in \mathcal{A}(t),~ t \in [0,1]$$

$$a^{T}(t)x + b(t) < 0,~ \forall x \in \mathcal{B}(t),~ t \in [0,1]$$

Find \(a(t)\), \(b(t)\) such that

A Full Example:  VPolytope

$$v_{1}$$

$$v_{2}$$

$$v_{3}$$

$$a^{T}x+b > 0$$

$$a^{T}x+b < 0$$

A Full Example

$$v_{1}$$

$$v_{2}$$

$$v_{3}$$

$$a^{T}x+b > 0$$

$$\Updownarrow \\ a^{T} (t) v_{i}(t) + b(t) \geq 1,~ t \in [0,1],~i=1,2,3$$

$$\Updownarrow \\ a^{T} (t) v_{i} (t) + b_{i} (t) -1 = \lambda (t) + t (1-t) \nu (t) \\ \lambda(t),~ \nu(t) \text{are SOS}$$

$$a^{T} (t) x + b(t) > 0, ~ \forall x \in \mathcal{A} (t), ~ t \in [0,1]$$

$$a^{T}_{\mathcal{A}, \mathcal{B}}(t)x + b_{\mathcal{A}, \mathcal{B}}(t) > 0,~ \forall x \in \mathcal{A}(t),~ t \in [0,1]$$

$$a^{T}_{\mathcal{A}, \mathcal{B}}(t)x + b_{\mathcal{A},\mathcal{B}}(t) < 0,~ \forall x \in \mathcal{B}(t),~ t \in [0,1]$$

Find \(a_{\mathcal{A},\mathcal{B}}(t)\), \(b_{\mathcal{A},\mathcal{B}} (t)\) such that

For all pairs \((\mathcal{A}, \mathcal{B})\)

Convex Optimization Programs whose only hyperparameter is the degree of the hyperplane

A Recipe for Certifying Non-Collision

Results: Certifying A Bimanual RRT

# of Sos Program 25830
# Of RRT Edges 105
Average Time to Certify Edge 0.299 s
Time to Certify Goal Plan 1.211 s
Time to Certify Whole Tree 31.5 s

Results: Certifying Piecewise Cubic Paths

# of Sos Program 5160
# of Cubic Segments 30
Average Time to Certify Edge 0.307 s
Time to Certify Plan 9.21 s

Certifying Bimanual RRT Motion Plans in a Second

Alexandre Amice

Peter Werner

Russ Tedrake

Made with Slides.com