For any \(x>0\)
$$\Gamma \left( x \right) = \int_0^\infty {s^{x - 1} e^{ - s} ds}$$
For all complex numbers \(z\) except the non-positive integers
$$\Gamma (z)={\frac {e^{-\gamma z}}{z}}\prod _{n=1}^{\infty }\left(1+{\frac {z}{n}}\right)^{-1}e^{z/n},$$
where \(\gamma\) is Euler–Mascheroni constant.
For any \(x>0\) and \( \Re(z)>-1 \) where \(L_n\) is generalized Laguerre polynomial of degree \(n\). |
$$\Gamma(x+1) = x \Gamma(x)$$
$$x! = \Gamma(x+1)$$
$$\Gamma(n+1) = n!$$
$$\Gamma(x) = \frac{\Gamma(x+1)}{x}, x<0$$
For any \(\Re(x)>0\) and \( \Re(y)>0 \)
|
$$\mathrm {B} (x,y)=\mathrm {B} (y,x)$$
$$\mathrm {B} (x,y)={\frac {\Gamma (x)\,\Gamma (y)}{\Gamma (x+y)}}$$
$${\binom {n}{k}}={\frac {1}{(n+1)\mathrm {B} (n-k+1,k+1)}}$$
$$\begin{aligned} \frac{\text{d}f(x)}{\text{d}x} = 2x \quad\longleftarrow f(x) &= x^2 \longrightarrow \quad \int f(x) dx = \frac{x^3}{3}+c_1\\ \frac{\text{d}^2f(x)}{\text{d}x^2} = 2 \quad\longleftarrow f(x) &= x^2 \longrightarrow \quad \int\int f(x) dx = \frac{x^4}{12}+c_1 x + c_2 \end{aligned}$$
What does \(\displaystyle \frac{\text{d}^{\frac{1}{2}}f(x)}{\text{d}x^{\frac{1}{2}}}\) mean?
Fractional Calculus was born in 1695
finding the curve such that the time needed for a particle to descend from a given position to the bottom of the curve (assuming there is no friction) is independent of position.
Theorem. (Cauchy formula for repeated integration) Let \(f\) be some continuous function on the interval \([a, b]\). The \(nth\) repeated integral of \(f\) based at \(a\),
$$f^{(-n)}(x) = \int_a^x\int_a^{\sigma_1}\cdots\int_a^{\sigma_{n-1}} f(\sigma_n)d\sigma_n d\sigma_{n-1} \cdots d\sigma_{1},$$
is given by single integration:
$$f^{(-n)}(x) = \frac{1}{(n-1)!}\int_a^x (x-t)^{n-1} f(t) dt.$$
Proof. (by induction)
$$\begin{aligned}f^{(-(n+1))}(x)&=\displaystyle\int_{a}^{x} \int_{a}^{\sigma_{1}} \cdots \int_{a}^{\sigma_{n}} f\left(\sigma_{n+1}\right) d \sigma_{n+1} d \sigma_{n} \cdots d \sigma_{2} d \sigma_{1} \\&=\displaystyle\frac{1}{(n-1) !} \int_{a}^{x} \int_{a}^{\sigma_{1}}\left(\sigma_{1}-t\right)^{n-1} f(t) d t d \sigma_{1} \\ \quad&=\displaystyle\frac{1}{(n-1) !} \int_{a}^{x} \int_{t}^{x}\left(\sigma_{1}-t\right)^{n-1} f(t) d \sigma_{1} d t \\ \quad&=\displaystyle\frac{1}{(n) !} \int_{a}^{x}\left((x-t)^{n}-(t-t)^{n}\right) f(t) d t \\ \quad&=\displaystyle\frac{1}{(n) !} \int_{a}^{x}(x-t)^{n} f(t) d t \end{aligned}$$
Definition. (Riemann-Liouville Operator). Let \(f\) be a continuous function, \(\alpha \in \mathbb{R}^+\), and \(t \in \mathbb{R}\). The fractional integral of order \(\alpha\) is defined as:
$$J^{\alpha} f(t)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-u)^{\alpha-1} f(u) d u$$
Definition. (Hadamard Operator). Let \(f\) be a continuous function, \(\alpha \in \mathbb{R}^+\), and \(t \in \mathbb{R}\). The fractional integral of order \(\alpha\) is defined as:
$${\displaystyle _{a}J_{t}^{\alpha }f(t)={\frac {1}{\Gamma (\alpha )}}\int _{a}^{t}\left(\log {\frac {t}{\tau }}\right)^{\alpha -1}f(\tau ){\frac {d\tau }{\tau }},\qquad t>a\,.}$$
Definition. (Atangana–Baleanu Operator). Let \(f\) be a continuous function, \(\alpha \in \mathbb{R}^+\), \(t \in \mathbb{R}\) and \(AB(x)\) be a normalization function such that \(AB(0)=AB(1)=1\). The fractional integral of order \(\alpha\) is defined as:
$$_{a}^{AB}J_{t}^{\alpha }f(t)={\frac {1-\alpha }{AB(\alpha )}}f(t)+{\frac {\alpha }{AB(\alpha )\Gamma (\alpha )}}\int _{a}^{t}\left(t-\tau \right)^{\alpha -1}f(\tau )\,d\tau$$
$$D^{1.5}f(t) = D^2J^{.5}f(t)\\D^{1.5}f(t) = J^{.5}D^2f(t)$$
Definition. (Riemann-Liouville operator) Pick some \(\alpha \in \mathbb{R}^+\), let \(n\) be the nearest integer greater than \(\alpha\). The Riemann-Liouville fractional derivative of order \(\alpha\) of a function \(f(t)\) is given by:
$$D_{RL}^{\alpha} f(t)=\frac{d^{n}}{d t^{n}} J^{n-\alpha} f(t)=\frac{1}{\Gamma(n-\alpha)} \frac{d^{n}}{d t^{n}} \int_{0}^{t}(t-u)^{n-\alpha-1} f(u) d u$$
Definition. (Caputo operator) Pick some \(\alpha \in \mathbb{R}^+\), let \(n\) be the nearest integer greater than \(\alpha\). The Caputo fractional derivative of order \(\alpha\) of a function \(f(t)\) is given by:
$$D_{C}^{\alpha} f(t)=J^{n-\alpha} \frac{d^{n}}{d t^{n}} f(t)=\frac{1}{\Gamma(n-\alpha)} \int_{0}^{t}(t-u)^{n-\alpha-1} f^{(n)}(u) d u$$
For any \(c \in \mathbb{R}\):
Theorem. Let \(f\) be a continuous function, \(\alpha \in \mathbb{R}^+\) and \(n − 1 < \alpha < n\). Then:
$$D_{RL}^{\alpha} f(t)=D_{C}^{\alpha} f(t)+\sum_{k=0}^{n-1} \frac{f^{(k)}\left(0^{+}\right)}{\Gamma(1+k-\alpha)}(t)^{k-\alpha}$$
Let \(\alpha > 0, C, K \in \mathbb{R}\), and let \(f\) and \(g\) be functions such that their fractional derivatives and integrals exist. Then
The fractional integral of order \(\alpha\) of \(1\) is given by
$$J^{\alpha} 1=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-u)^{\alpha-1} d u=\frac{t^{\alpha}}{\alpha \Gamma(\alpha)}=\frac{t^{\alpha}}{\Gamma(\alpha+1)}$$
For \(nth\) order integral we have:
$$J^{n \alpha} 1=\frac{t^{n \alpha}}{\Gamma(n \alpha+1)}$$
Theorem. The Riemann-Liouville derivative of order \(\alpha > 0\) with \(n − 1 < \alpha < n\) of the function \(f(t) = t^p\) for \(p \ge 0\) is given by:
$$D^{\alpha} t^{p}=\frac{\Gamma(p+1)}{\Gamma(p-\alpha+1)} t^{p-\alpha}$$
Proof. We compute the Riemann-Liouville Derivative of power \(\alpha > 0\) as:
$$D^{\alpha} t^{p}=\frac{1}{\Gamma(n-\alpha)} \frac{d^{n}}{d t^{n}} \int_{0}^{t}(t-u)^{n-\alpha-1} u^{p} d u$$
Set \(u = vt\) for \(0 \le v \le 1\), \(du = tdv\) and we get:
$$\begin{aligned} D^{\alpha} t^{p}&=\frac{1}{\Gamma(n-\alpha)} \frac{d^{n}}{d t^{n}} \int_{0}^{1}((1-v) t)^{n-\alpha-1}(v t)^{p} t d v\\ &=\frac{1}{\Gamma(n-\alpha)} \int_{0}^{1}(1-v)^{n-\alpha-1} v^{p} d v \frac{d^{n}}{d t^{n}} t^{n+p-\alpha} \\ &=\frac{1}{\Gamma(n-\alpha)} B(p+1, n-\alpha) \frac{d^{n}}{d t^{n}} t^{n+p-\alpha} \\ &=\frac{1}{\Gamma(n-\alpha)} B(p+1, n-\alpha) \frac{\Gamma(n+p-\alpha+1)}{\Gamma(p-\alpha+1)} t^{p-\alpha} \\ &=\frac{1}{\Gamma(n-\alpha)} \frac{\Gamma(p+1) \Gamma(n-\alpha) \Gamma(n+p-\alpha+1)}{\Gamma(n+p-\alpha+1)} \frac{1}{\Gamma(p-\alpha+1)} t^{p-\alpha} \\ &=\frac{\Gamma(p+1)}{\Gamma(n-\alpha+1)} t^{p-\alpha} \end{aligned}$$
For any \(t\ge0\) the Lane-Emden equation is defined as:
$$y''(t)+\frac{2}{t}y'(t)+y^m(t)=g(t)$$
$$D^\alpha y+\frac{2}{t}D^\beta y+y^m(t)=g(t)$$
where \(1<\alpha\le2,0<\beta\le1\).
For any \(t\ge0\) the fractional Burgers equation is defined as:
$$\frac{\partial^\alpha u}{\partial t^\alpha} +\varepsilon u\frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2} - \eta \frac{\partial^\beta u}{\partial x^\beta}$$
where \(0<\alpha,\beta\le1\) and \(\varepsilon,\eta,\nu\) are some parameters.
For any \(t\ge0\) the Volterra's population model is defined as:
$$\kappa u'(t) = u(t) - u(t)^2 - u(t) \int_0^t u(x) dx,$$
$$\kappa D^\alpha u = u(t) - u(t)^2 - u(t) \int_0^t u(x) dx,$$
where \(0<\alpha\le1\) and \(\kappa\) is a parameter.
Neural Ordinary differential equations
$$\frac{\text{d}h(t)}{\text{d}t} = f(h(t),t,\theta)$$
Accelerating Neural ODEs with
Spectral Elements
$$\begin{aligned} \min _{\theta \in \mathbb{R}^{m}} \quad&\int_{t_{0}}^{t_{1}} L(t, x(t)) d t\\ s.t. \quad&\dot{x}(t)=f(t, x(t), u(t) ; \theta)\\ s.t. \quad&x\left(t_{0}\right)=x_{0} \end{aligned}$$
Fractional Hopfield Neural Networks: Fractional Dynamic Associative Recurrent Neural Networks
Dynamics Analysis of a New Fractional-Order Hopfield Neural Network with Delay and Its Generalized Projective Synchronization
Fractional-order gradient descent learning of BP neural networks with Caputo derivative
$$w_{new}= w_{old} - \eta \frac{\text{d}^\alpha L}{\text{d}\theta^\alpha}$$