Polarimetry of the eclipsing pulsar PSR J17482446A

Almog Yalinewich

19.10.18

Schematic

0.85 R_{\odot}
0.85R0.85 R_{\odot}
\approx 1 M_{\odot}
1M\approx 1 M_{\odot}
\approx 0.1 M_{\odot}
0.1M\approx 0.1 M_{\odot}
11 \rm ms
11ms11 \rm ms
2 \rm h
2h2 \rm h

Eclipse at different frequencies

Constraint from constant pulse width at different frequencies

\frac{d t}{d \omega} \approx -c r_e \frac{\int n dl}{\omega^3} \Rightarrow n < \Delta t/c r_e a \Delta \frac{1}{\omega^2}
dtdωcrendlω3n&lt;Δt/creaΔ1ω2\frac{d t}{d \omega} \approx -c r_e \frac{\int n dl}{\omega^3} \Rightarrow n &lt; \Delta t/c r_e a \Delta \frac{1}{\omega^2}
\Delta t \approx 0.5 {\rm ms}
Δt0.5ms\Delta t \approx 0.5 {\rm ms}
n < 10^6 \rm cm^{-3}
n&lt;106cm3n &lt; 10^6 \rm cm^{-3}
\omega^2 = \omega_p^2 + k^2 c^2, \omega_p^2 \approx \frac{q^2 n}{m_e }, q^2\approx r_e m_e c^2
ω2=ωp2+k2c2,ωp2q2nme,q2remec2\omega^2 = \omega_p^2 + k^2 c^2, \omega_p^2 \approx \frac{q^2 n}{m_e }, q^2\approx r_e m_e c^2
\omega \approx 730 \rm MHz
ω730MHz\omega \approx 730 \rm MHz

Free Free Absorption

Emissivity

\varepsilon_{\omega} \approx \frac{m_e c^2}{r_e^3} \left(n r_e^3 \right)^2 \sqrt{\frac{m_e c^2}{k T}}
εωmec2re3(nre3)2mec2kT\varepsilon_{\omega} \approx \frac{m_e c^2}{r_e^3} \left(n r_e^3 \right)^2 \sqrt{\frac{m_e c^2}{k T}}

Blackbody

\mathcal{B}_{\omega} \approx \frac{k T}{c^2} \omega^2
BωkTc2ω2\mathcal{B}_{\omega} \approx \frac{k T}{c^2} \omega^2

Absorption

{\alpha}_{\omega} \approx \frac{\varepsilon}{\mathcal{B}_{\nu}} \approx \frac{c^2}{r_e^3 \omega^2} \left(n r_e^3\right)^2 \left(\frac{m_e c^2}{k T}\right)^{3/2}
αωεBνc2re3ω2(nre3)2(mec2kT)3/2{\alpha}_{\omega} \approx \frac{\varepsilon}{\mathcal{B}_{\nu}} \approx \frac{c^2}{r_e^3 \omega^2} \left(n r_e^3\right)^2 \left(\frac{m_e c^2}{k T}\right)^{3/2}

Temperature constraint

Absorption

{\alpha}_{\nu} \approx \frac{\varepsilon}{\mathcal{B}_{\nu}} \approx \frac{c^2}{r_e^3 \omega^2} \left(n r_e^3\right)^2 \left(\frac{m_e c^2}{k T}\right)^{3/2}
ανεBνc2re3ω2(nre3)2(mec2kT)3/2{\alpha}_{\nu} \approx \frac{\varepsilon}{\mathcal{B}_{\nu}} \approx \frac{c^2}{r_e^3 \omega^2} \left(n r_e^3\right)^2 \left(\frac{m_e c^2}{k T}\right)^{3/2}
\alpha_{\nu} a \approx 1 \Rightarrow k T < m_e c^2 \left( \frac{a c^2} {r_e^3 \omega^2}\right)^{2/3} \left(n r_e^3 \right)^{4/3}
ανa1kT&lt;mec2(ac2re3ω2)2/3(nre3)4/3\alpha_{\nu} a \approx 1 \Rightarrow k T &lt; m_e c^2 \left( \frac{a c^2} {r_e^3 \omega^2}\right)^{2/3} \left(n r_e^3 \right)^{4/3}

Temperature less than 80K!

Gas will not be ionised

Apologetics

Arabian Nights

Large neutral density?

Ionisation fraction

Absorption will heat up plasma to

Cooling through charge exchange?

10^{-6}
10610^{-6}
10^{6} K
106K10^{6} K

Polarisation outside Eclipse

Depolarisation during Eclipse

Minimum magnetic field from RM

\Delta \theta \approx \frac{q^3}{m_e^2 c^2 \omega^2} \int B_{\parallel} n \cdot ds
Δθq3me2c2ω2Bnds\Delta \theta \approx \frac{q^3}{m_e^2 c^2 \omega^2} \int B_{\parallel} n \cdot ds
RM = \frac{\omega^2}{c^2} \Delta \theta \approx \frac{r_e^2}{q}\int B_{\parallel} n \cdot ds
RM=ω2c2Δθre2qBndsRM = \frac{\omega^2}{c^2} \Delta \theta \approx \frac{r_e^2}{q}\int B_{\parallel} n \cdot ds
RM \left[1 \frac{rad}{\rm m^2}\right] = 812 \int B_{\parallel}\left[\mu \rm G\right] n \left[\rm cm^{-3}\right] \cdot ds \left[\rm kpc\right]
RM[1radm2]=812B[μG]n[cm3]ds[kpc]RM \left[1 \frac{rad}{\rm m^2}\right] = 812 \int B_{\parallel}\left[\mu \rm G\right] n \left[\rm cm^{-3}\right] \cdot ds \left[\rm kpc\right]
B > 100 \mu \rm G
B&gt;100μGB &gt; 100 \mu \rm G

Magnetic field configuarations

B

l

\Delta \theta \propto a B
ΔθaB\Delta \theta \propto a B

Random magnetic field, same path

B

l

\Delta \theta \propto \sqrt{l a} B
ΔθlaB\Delta \theta \propto \sqrt{l a} B

Multipath in random magnetic field

B

l

f \left(\Delta \theta\right) \propto \exp \left(- \frac{\Delta \theta^2 }{\frac{q^6}{m_e^4 c^4 \omega^4} n^2 B^2 l a} B\right)
f(Δθ)exp(Δθ2q6me4c4ω4n2B2laB)f \left(\Delta \theta\right) \propto \exp \left(- \frac{\Delta \theta^2 }{\frac{q^6}{m_e^4 c^4 \omega^4} n^2 B^2 l a} B\right)

Frequency dependence

Rotation angle decreases with wavelength

\Delta \theta \approx \frac{q^3}{m_e^2 c^2 \omega^2} \int B_{\parallel} n \cdot ds
Δθq3me2c2ω2Bnds\Delta \theta \approx \frac{q^3}{m_e^2 c^2 \omega^2} \int B_{\parallel} n \cdot ds

Power law distribution of magnetic field domains?

Lower wavelengths sensitive to smaller, stronger domains

Made with Slides.com