Measuring the Black Hole Spin with Optical Vortices

Almog Yalinewich

16.5.2019

EHT Image

Mass is straightforward

Spin?

Simulations and Jets

Simulations and Jets

wanted: cleaner measurement

Phase Information

Phase Retrieval

\frac{\partial I}{\partial z} = -\frac{1}{2 \pi} \nabla_{x,y} \left(I \nabla_{x,y} P\right)
\frac{\partial P}{\partial z} = \frac{1}{4 \pi \sqrt{I}} \nabla_{x,y}^2 \sqrt{I} - |\nabla_{x,y} P|^2
\psi = \sqrt{I} \exp \left(i P\right)

Phase Map

Magnetic Faraday Effect

Mathematical Model

Paraxial Approximation

\frac{1}{c^2} \frac{\partial^2 \psi}{\partial t^2} - \nabla^2\psi = 0

Wave equation

monochromatic wave

Helmholtz equation

\left(k^2 +\nabla^2\right) \psi = 0

propagation primarily along z direction

\left(\nabla_{\perp}^2 + i k \frac{\partial}{\partial z}\right) \psi = 0

Paraxial equation

Gaussian Modes

\left(\nabla_{\perp}^2 + i k \frac{\partial}{\partial z}\right) \psi = 0

Looks like the diffusion equation

Self similar solutions are Gaussian

\psi \propto \frac{w_0}{w\left(z\right)} \exp \left(-\frac{r^2}{w^2\left(z\right)}\right) \exp \left(-i \left(kz+\frac{k r^2}{2R\left(z\right)} - \psi \left(z\right)\right)\right)
w \left(z\right) = w_0 \sqrt{1+\frac{z^2}{z_R^2}}
z_R = k w_0^2
R \left(z\right) = z \left(1+\frac{z_R^2}{z^2}\right)
\psi = \arctan \left(z/z_R\right)

Gauss Laguerre Modes

\left(\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} - \frac{m^2}{r^2} + i k \frac{\partial}{\partial z}\right) \psi = 0

Polar coordinates

Self similar solutions

\psi \propto \frac{w_0}{w\left(z\right)} \exp \left(-\frac{r^2}{w^2\left(z\right)}\right) \left(\frac{\sqrt{2} r}{w \left(z\right)} \right)^{|m|} L_p^{|m|} \left(\frac{2 r^2}{w^2 \left(z\right)}\right) \times
\times \exp \left(-i \left(kz+\frac{k r^2}{2R\left(z\right)} - \psi \left(z\right) - m \theta \right)\right)

Optical Vortex

Polarisation

Results

Observations

Laguerre Gauss modes => Spiral Spectrum

Simulation

Bottom Line

a = 0.9 \pm 0.1
Made with Slides.com