Black widow evolution:magnetic braking by an ablated wind

Almog

Yalinewich

 

Pulsar

Coffee

 

7.2.20

Mass Loss from a Black Widow

Energy budget

\frac{G M_{\odot}^2}{R_{\odot}} \approx 10^{48} \rm \, erg
L_{\odot} t_H \approx 10^{50} \, \rm erg

Efficiency?

Albedo?

(regressive energy distribution)

Extremely Low Mass Companion

PSR J1719-1438 and PSR J2322-2650

Parker Wind

\frac{\partial}{\partial r} \left(\rho v r^2\right) =0
p = \frac{\rho k T}{\mu}
\rho v \frac{\partial v}{\partial r} + \frac{\partial p}{\partial r} = - \frac{G M \rho}{r^2}
\frac{1}{2} \left(1 - \frac{k T}{\mu v^2} \right ) \frac{\partial v^2}{\partial r} = \frac{2 k T}{\mu r} - \frac{G M}{r^2}

Sonic Point

c = v
R_b \approx \frac{G M}{c^2}
\left(1 - \frac{c^2}{v^2} \right ) \frac{\partial}{\partial r} \frac{v^2}{2} = \frac{2 c^2}{r} - \frac{G M}{r^2}
r \ll R_g
r \gg R_g

Hydrostatic

Coasting

Analytic Solution

\rho v \frac{\partial v}{\partial r} + \frac{\partial p}{\partial r} = - \frac{G M \rho}{r^2}
\rho v \frac{\partial v}{\partial r} + c^2\frac{\partial \rho}{\partial r} = - \frac{G M \rho}{r^2}
\frac{1}{2} v^2 + c^2 \ln \frac{\rho}{\rho_0} + \frac{G M}{R} - \frac{G M}{r} = 0
\rho_b \approx \rho_0 \exp \left(-R_b/R\right)

Complication: Heating & Cooling

\left(1 - \frac{c^2}{v^2} \right ) \frac{\partial}{\partial r} \frac{v^2}{2} = \frac{2 c^2}{r} - \frac{G M}{r^2} + \frac{\partial c^2}{\partial r}
R_b \approx \frac{G M}{c^2} / \left(1+\frac{d \ln c}{d \ln r}\right)

Mass flux

\dot{M} \approx \rho_b R_b^2 c

Radiative Processes

Heating

Inelastic Compton Scattering

Ionisation

H \approx \sigma F n x
\sigma \approx r_e^2
\sigma \approx \lambda r_e \left(\frac{E}{\varepsilon}\right)^3

lines

Inelastic Compton Scattering

x \approx \varepsilon /m_e c^2

Cooling

free free

free bound

C \approx \Lambda n^2
C_{ff} \approx \alpha \frac{m_e c^3}{r_e^4} \left(n r_e^3 \right)^2 \sqrt{\frac{k T}{m_e c^2}}
C_{fb} \approx \alpha^3 \frac{m_e c^3}{r_e^4} \left(n r_e^3 \right)^2 \sqrt{\frac{m_e c^2}{k T}}

lines

Cooling Function

Difficulty in cooling past 10,000 K

Minimum Pressure

p \propto \rho \cdot 10^4 K\propto \rho

High densities

constant temperature

Low densities

ff cooling

T \propto \frac{1}{\rho^2}
p \propto \rho T \propto \frac{1}{\rho}

minimum pressure

p_0

Temperature Scales

k T_g \approx \frac{G m}{R}

Escape temperature

Inverse Compton temperature

k T_{IC} \approx \varepsilon

Characteristic temperature

k T_{ch} \approx H \frac{R}{c_{ch}}
k T_{ch} \approx \left(\sigma^2 F^2 R^2 \mu\right)^{1/3}

Temperature Scales

k T_g \approx \frac{G m}{R}

Escape temperature

Inverse Compton temperature

k T_{IC} \approx \varepsilon

Characteristic temperature

k T_{ch} \approx H \frac{R}{c_{ch}}
k T_{ch} \approx \left(\sigma^2 F^2 R^2 \mu\right)^{1/3}

Hot Wind

T_g < T_{IC} < T_{ch}

Sonic point is extremely close to the surface

\frac{R_b}{R} - 1 \ll 1

Mass loss rate

\rho_b \approx \frac{p_0}{c_{IC}^2} \approx \frac{\mu p_0}{k T_{IC}}
\dot{M} \approx R^2 \rho_b c_{IC}

Intermediate Wind

T_g < T_{ch} < T_{IC}

Sonic point is withing a few stellar radii

R_b \approx R

Mass loss rate

\rho_b \approx \frac{p_0}{c_{ch}^2} \approx \frac{\mu p_0}{k T_{ch}}
\dot{M} \approx R^2 \rho_b c_{ch}

Cold Wind

T_{ch} < T_g < T_{IC}

Sonic point is much larger than stellar radius

R_b \gg R

speed of sound

c_s \approx v_g
\dot{M} \approx \frac{p_0}{c_{ch}} \frac{T_{ch}^2}{T_g^2}

velocity

k T_g \approx H \frac{R}{v}

mass loss

Roche Lobe Overflow

Gas escapes through narrow angle

\theta_g \approx \sqrt{\frac{T_{ch}}{T_g}}

Net mass loss

\dot{m} \approx R^2 \theta_g^2 \frac{p_0}{c_{ch}}

Mass Loss

Application

Characteristic temperature from Compton heating

k T_{ch} \approx \mu^{1/3} \left(\sigma_T F R\right)^{1/3}

Efficiency

\frac{G m \dot{m}}{R} \approx - \eta L_{\gamma} \left(\frac{R}{a}\right)^2
\eta \approx 2.2 \cdot 10^{-4} \left(\frac{L_{\gamma}}{L_{\odot}}\right)^{1/3} \left(\frac{m}{10^{-2} M_{\odot}}\right)^{1/9} \left(\frac{P_{\rm orb}}{1 \rm \, h}\right)^{-2/9}

Evaporation time

t_{\rm evap} \approx m/\dot{m} \approx
\approx 27 \, {\rm Gyr} \left(\frac{L_{\gamma}}{L_{\odot}}\right)^{-4/3} \left(\frac{m}{10^{-2} M_{\odot}}\right)^{8/9} \left(\frac{P_{\rm orb}}{1 \rm \, h}\right)^{-4/9}

Comparison to Observations

Magnetic Braking

Overview

Synchronised

Lagging

Magnetic breaking

compensation from orbital angular momentum

Net result: Depletion of orbital angular momentum

Alfven Radius

Split monopole magnetic field

B \approx B_0 \left(\frac{R_{NS}}{r}\right)^2

equilibrium between magnetic and ram pressure

B_0^2 R_A^2 \left(\frac{R}{R_A}\right)^4 \approx \dot{m} v \left(R_A\right)

Sun Spin Down

R_A \approx R \sqrt{\frac{B_{\odot}^2 R_{\odot}^2}{\dot{M}_{\odot} v_{\odot}}}

Matter is co - rotating up to the Alfven radius, so mass loss required for factor of two spin - down is

\frac{\Delta M}{M} \approx \frac{R^2}{R_A^2}

Spin Down Time

t_{\rm mag} \approx \frac{m}{\dot{m}} \frac{a^2}{R_A^2} \approx
\approx 31 \left(\frac{L_{\gamma}}{L_{\odot}}\right)^{-\frac{4}{9}} \left(\frac{P_{\rm orb}}{1 \, \rm h}\right)^{-\frac{34}{27}} \left(\frac{m}{10^2 M_{\odot}}\right)^{\frac{2}{27}} \left(\frac{B_0}{10^2 \, \rm G}\right)^{-\frac{4}{3}}

Evaporation time determined by

\min \left(t_{\rm evap}, t_{\rm mag}\right)

Comparison to Observations

Conclusion

Evaporation with fixed orbital parameters is too slow to explain observations

 

mass loss is regulated by magnetic braking

 

 

questions?

Backup slides

Made with Slides.com