@alrocar
This is NOT a Python workshop
This is NOT a visualization cookbook
@alrocar
@alrocar
@alrocar
@alrocar
DATA
METHODOLOGY
TECHNIQUE
@alrocar
@alrocar
@alrocar
@alrocar
DATA JOURNALISTS
DATA SCIENTISTS
CARTOGRAPHERS
@alrocar
SOURCE: MYSELF
@alrocar
@alrocar
There's not just one path
Data viz is f***ing hard
@alrocar
KNOWLEDGE BASE: STATS, ML, SPATIAL...
TOOLS: PYTHON, SQL, JAVASCRIPT...
PLATFORMS: CARTO, ADOBE...
ART: PHOTOGRAPHY, WRITING, DESIGN...
@alrocar
PASSION
PATIENCE
COMMUNICATION
LISTEN!
ETHICS
@alrocar
THE "IMPRACTICAL" PATH
@alrocar
DO IT FOR FUN
@alrocar
THE FRANK ABAGNALE JR. METHOD TO LEARN VISUALIZATION TECHNIQUES
@alrocar
@alrocar
@alrocar
@alrocar
@alrocar
@alrocar
@alrocar
@alrocar
@alrocar
@alrocar
@alrocar
@alrocar
@alrocar
# NOT WORKING CODE, JUST TO ILLUSTRATE HOW THIS FITS IN PYTHON
from cartoframes.viz import Map, Layer
from cartoframes.data import Dataset
import pandas
# DATA ACQUISITION AND INGESTION
df = pandas.read_csv(csv_file)
carto_table = "my_data"
Dataset(df).upload(table_name=carto_table)
# DATA ANALYSIS AND TRANSFORMATION
sql = "SELECT ... SOME SPATIAL ANALYSIS"
dataset = Dataset.create_from_query(sql, carto_table)
# VISUALIZATION
m = Map([
Layer(
dataset,
```
color: ramp($column_name, bold)
width: 15
symbol: cross
```
)
])
# SHARE IT
m.publish()
everything is related to everything else, but near things are more related than distant things"
you will learn from anyone, but you are more likely to learn from near folks than from distant ones"
@mamataakella
@xurxosanz
@ ramiroaznar
@alrocar
@alrocar