端傳媒數據記者林佳賢
從網路搜集資料的行為,通稱「網路爬蟲」。寫網路爬蟲通常用到的是Python,但R語言也有相應的package,可以完成不輸給Python的爬蟲任務。
# load httr package
library(httr)
# 用GET功能把591租屋網搜尋台北市租屋的結果拿下來
doc <- GET("https://rent.591.com.tw/index.php?module=search&action=rslist&is_new_list=1&type=1&searchtype=1®ion=1&orderType=desc&listview=txt&firstRow=120&totalRows=12674")
# 用content功能觀察剛剛拿下來的網頁內容
content(doc, "text")
# load httr package
library(httr)
library(jsonlite)
# 用GET功能把591租屋網搜尋台北市租屋的結果拿下來
doc <- GET("https://rent.591.com.tw/index.php?module=search&action=rslist&is_new_list=1&type=1&searchtype=1®ion=1&orderType=desc&listview=txt&firstRow=120&totalRows=12674")
# 用content功能觀察剛剛拿下來的網頁內容
content(doc, "text")
# 把剛剛拿下來的網頁內容,從json格式轉成R容易處理的格式
df <- fromJSON(content(doc, "text"))
# load httr package
library(httr)
library(jsonlite)
# 用GET功能把591租屋網搜尋台北市租屋的結果拿下來
doc <- GET("https://rent.591.com.tw/index.php?module=search&action=rslist&is_new_list=1&type=1&searchtype=1®ion=1&orderType=desc&listview=txt&firstRow=120&totalRows=12674")
# 用content功能觀察剛剛拿下來的網頁內容
content(doc, "text")
# 把剛剛拿下來的網頁內容,從json格式轉成R容易處理的格式
df <- fromJSON(content(doc, "text"))
# 我們還要從df這個list中,找到需要的那一部分
rent_data <- df[["main"]]
# 觀察一下rent_data
rent_data
# load package
library(httr)
library(jsonlite)
library(rvest)
# 用GET功能把591租屋網搜尋台北市租屋的結果拿下來
doc <- GET("https://rent.591.com.tw/index.php?module=search&action=rslist&is_new_list=1&type=1&searchtype=1®ion=1&orderType=desc&listview=txt&firstRow=120&totalRows=12674")
# 用content功能觀察剛剛拿下來的網頁內容
content(doc, "text")
# 把剛剛拿下來的網頁內容,從json格式轉成R容易處理的格式
df <- fromJSON(content(doc, "text"))
# 我們還要從df這個list中,找到需要的那一部分
rent_data <- df[["main"]]
# 觀察一下rent_data
rent_data
# 用rvest的read_html功能,整理rent_data
rent_html <- read_html(rent_data)
# load package
library(httr)
library(jsonlite)
library(rvest)
# 用GET功能把591租屋網搜尋台北市租屋的結果拿下來
doc <- GET("https://rent.591.com.tw/index.php?module=search&action=rslist&is_new_list=1&type=1&searchtype=1®ion=1&orderType=desc&listview=txt&firstRow=120&totalRows=12674")
# 用content功能觀察剛剛拿下來的網頁內容
content(doc, "text")
# 把剛剛拿下來的網頁內容,從json格式轉成R容易處理的格式
df <- fromJSON(content(doc, "text"))
# 我們還要從df這個list中,找到需要的那一部分
rent_data <- df[["main"]]
# 觀察一下rent_data
rent_data
# 用rvest的read_html功能,整理rent_data
rent_html <- read_html(rent_data)
# 用html_nodes、html_text和html_attr功能,把需要的資料拿出來
rent_df <- data.frame(
county = html_text(html_nodes(rent_html, ".shTxInfo .txt-sh-region")),
town = html_text(html_nodes(rent_html, ".shTxInfo .txt-sh-section")),
name = html_attr(html_nodes(rent_html, ".shTxInfo .address a"), "title"),
area = html_text(html_nodes(rent_html, ".shTxInfo .area")),
price = html_text(html_nodes(rent_html, ".shTxInfo .price .fc-org"))
)
# load package
library(httr)
library(jsonlite)
library(rvest)
# 用GET功能把591租屋網搜尋台北市租屋的結果拿下來
doc <- GET("https://rent.591.com.tw/index.php?module=search&action=rslist&is_new_list=1&type=1&searchtype=1®ion=1&orderType=desc&listview=txt&firstRow=120&totalRows=12674")
# 用content功能觀察剛剛拿下來的網頁內容
content(doc, "text")
# 把剛剛拿下來的網頁內容,從json格式轉成R容易處理的格式
df <- fromJSON(content(doc, "text"))
# 我們還要從df這個list中,找到需要的那一部分
rent_data <- df[["main"]]
# 觀察一下rent_data
rent_data
# 用rvest的read_html功能,整理rent_data
rent_html <- read_html(rent_data)
# 用html_nodes、html_text和html_attr功能,把需要的資料拿出來
rent_df <- data.frame(
county = html_text(html_nodes(rent_html, ".shTxInfo .txt-sh-region")),
town = html_text(html_nodes(rent_html, ".shTxInfo .txt-sh-section")),
name = html_attr(html_nodes(rent_html, ".shTxInfo .address a"), "title"),
area = html_text(html_nodes(rent_html, ".shTxInfo .area")),
price = html_text(html_nodes(rent_html, ".shTxInfo .price .fc-org"))
)
# 只要改動firstRow的數字,就能爬取其他頁面的資料。簡單的說,只要寫一個迴圈,就可以把所有台北市租屋資訊抓下來。
doc2 <- GET("https://rent.591.com.tw/index.php?module=search&action=rslist&is_new_list=1&type=1&searchtype=1®ion=1&orderType=desc&listview=txt&firstRow=160&totalRows=12674")
# load package
library(httr)
library(jsonlite)
library(rvest)
library(stringr)
...
# 清理價格資訊,把逗點跟「元」清掉,再轉成數字格式
rent_df$price <- as.numeric(str_replace_all(rent_df$price, ",|元", ""))
# load package
library(httr)
library(jsonlite)
library(rvest)
library(stringr)
...
# 清理價格資訊,把逗點跟「元」清掉,再轉成數字格式
rent_df$price <- as.numeric(str_replace_all(rent_df$price, ",|元", ""))
# 新成立type一欄,這一欄的資訊來自area欄。我們用「/」切割type欄,取出後面的部分作為type欄的資訊。
rent_df$type <- sapply(str_split(rent_df$area, "/"), "[[", 2)
# load package
library(httr)
library(jsonlite)
library(rvest)
library(stringr)
...
# 清理價格資訊,把逗點跟「元」清掉,再轉成數字格式
rent_df$price <- as.numeric(str_replace_all(rent_df$price, ",|元", ""))
# 新成立type一欄,這一欄的資訊來自area欄。我們用「/」切割type欄,取出後面的部分作為type欄的資訊。
rent_df$type <- sapply(str_split(rent_df$area, "/"), "[[", 2)
# 清理area欄,這一欄的資訊來自原本的area欄。我們用「/」切割type欄,取出前面的部分作為type欄的資訊。接著把「坪」清掉,再轉成數字格式。
rent_df$area <- as.numeric(str_replace_all(sapply(str_split(rent_df$area, "/"), "[[", 1), "坪", ""))
# load package
library(httr)
library(jsonlite)
library(rvest)
library(stringr)
...
# 清理價格資訊,把逗點跟「元」清掉,再轉成數字格式
rent_df$price <- as.numeric(str_replace_all(rent_df$price, ",|元", ""))
# 新成立type一欄,這一欄的資訊來自area欄。我們用「/」切割type欄,取出後面的部分作為type欄的資訊。
rent_df$type <- sapply(str_split(rent_df$area, "/"), "[[", 2)
# 清理area欄,這一欄的資訊來自原本的area欄。我們用「/」切割type欄,取出前面的部分作為type欄的資訊。接著把「坪」清掉,再轉成數字格式。
rent_df$area <- as.numeric(str_replace_all(sapply(str_split(rent_df$area, "/"), "[[", 1), "坪", ""))
# 新成立unit_price一欄,這一欄的資料是price欄除以area欄,四捨五入到整數位的結果。
rent_df$unit_price <- round((rent_df$price / rent_df$area))
# load package
library(httr)
library(jsonlite)
library(rvest)
library(stringr)
library(dplyr)
...
# 把rent591裡面台北市的資料拿出來
rent591_tp <- filter(rent591, county == "台北市")
# 把rent591裡面租金大於1萬元的資料拿出來
rent591_expensive <- filter(rent591, price > 10000)
# 把rent591裡面的套房資料拿出來
rent591_tao <- filter(rent591, type == "套房")
# 把rent591裡面的套房及雅房資料拿出來
rent591_tao_ya <- filter(rent591, type == "套房" | type == "雅房")
# load package
library(httr)
library(jsonlite)
library(rvest)
library(stringr)
library(dplyr)
...
# 把rent591_tp的資料以租金由高到低排列
rent591_tp <- arrange(rent591_tp, desc(price))
# 把rent591_expensive的資料以每坪租金由高到低排列
rent591_expensive <- arrange(rent591_expensive, desc(unit_price))
# 把rent591_tao的資料以每坪租金由低到高排列
rent591_tao <- arrange(rent591_tao, unit_price)
# 把rent591_tao_ya根據縣市名稱做排序
rent591_tao_ya <- arrange(rent591_tao_ya, county)
# load package
library(httr)
library(jsonlite)
library(rvest)
library(stringr)
library(dplyr)
...
# 計算台北市各行政區的平均租金
# 先把rent591_tp根據行政區分類
rent591_tp_group <- group_by(rent591_tp, town)
# 再根據分類結果計算各行政區的平均租金
rent591_tp_price <- summarise(rent591_tp_group, mean_price = mean(price))
# 最後把計算結果排序
rent591_tp_price <- arrange(rent591_tp_price, desc(mean_price))
# load package
library(httr)
library(jsonlite)
library(rvest)
library(stringr)
library(dplyr)
...
# 計算台北市各行政區的套房平均面積
# 先篩選出rent591_tp的套房資料
rent591_tp <- filter(rent591_tp, type == "套房")
# 先把rent591_tp根據行政區分類
rent591_tp_group <- group_by(rent591_tp, town)
# 再根據分類結果計算各行政區的平均租金
rent591_tp_area <- summarise(rent591_tp_group, mean_area = mean(area))
# 最後把計算結果排序
rent591_tp_area <- arrange(rent591_tp_area, desc(mean_area))
# load package
library(httr)
library(jsonlite)
library(rvest)
library(stringr)
library(dplyr)
library(ggplot2)
...
# 把台北市各行政區的平均租金繪製成長條圖
# 設定畫布跟基本資訊:使用的資料(rent591_tp_price)、x軸(town)、y軸(mean_price)
ggplot(rent591_tp_price, aes(town, mean_price)) +
# 選擇要畫的圖表類型,這裡選擇geom_bar(長條圖)。stat = "identity"指的是用原本的數字作為長條高度
geom_bar(stat = "identity") +
# 由於R預設字型不支援中文顯示,因此要在最後加上字體設定,這裡設定為STHeiti(黑體)
theme(text = element_text(family = "STHeiti"))
# load package
library(httr)
library(jsonlite)
library(rvest)
library(stringr)
library(dplyr)
library(ggplot2)
...
# 把台北市各行政區轉成可排序的factor格式,再根據自己定義的順序排序factor。
rent591_tp_price$town <- factor(rent591_tp_price$town,
c("大安區","松山區","中正區",
"內湖區","信義區","中山區",
"士林區","萬華區","南港區",
"大同區","北投區","文山區"))
# 再畫一次圖
ggplot(rent591_tp_price, aes(town, mean_price)) +
geom_bar(stat = "identity") +
theme(text = element_text(family = "STHeiti"))