Medical Image Registration for Glioblastoma MRI Using Constrained Metamorphosis.

Anton François

Advised by

Alain Trouvé

Advised by

Joan Glaunès & Pietro Gori

Introduction

Metamorphosis

Implementation

Constrained Metamorphosis

Future

works

Metamorphosis

Background

Comparing shapes

On Growth and Form, [D'arcy Thompson, (1917,1942)]

Compare species organs by the amount of deformation needed to match them.

Anton François - 05/03/2024

Image registration of medical images is an important step in many medical applications:

  • motion tracking
  • longitudinal studies
  • pre/post-surgical normalisation
  • statistical analysis (atlas construction)...

Before

 registration:

After

Image registration

Anton François - 04/06/2024

non-linear image registration: 

Image registration

temporal

Anton François - 04/06/2024

Deformation from vector fields

Let \(I\) and \(J\) be two images defined on \(\Omega\), we search for the deformation \(\varphi\) such that:

$$I = \varphi \cdot J$$

One can define, for any \(x \in \Omega, \varphi(x) = x + v(x)\) where \(v\) is a smooth vector field.

Limit: When \(v\) is large, \(\varphi\) can be not invertible anymore.

Anton François - 04/06/2024

Diffeomorphic image registration:

Finding a smooth one-to-one (non-linear) deformation to be biologically plausible (no holes, shearing, tearing...)

Image registration

Anton François - 04/06/2024

Source

Target

Automatic non-linear
 matching

With modern methods

LDDMM

Anton François - 04/06/2024

Source

Target

Automatic non-linear
 matching

LDDMM: Large Diffeomorphic Deformation Metric Mapping

With modern methods

Anton François - 05/03/2024

Let \(V\) be the Reproducing Kernel Hilbert Space (RKHS) of vector fields whose kernel is \(K\). We denote \(L: V \rightarrow V^*\) the Riesz operator such that \(\|v\|^2_V = ( Lv,v)\) .

Let \(K\) be the Gaussian reproducing kernel with \[K(x,y) = \exp\left( -\frac{|x -y|^2}{2\sigma^2}\right) \cdot \mathrm{Id}_{\mathbb{R}^d}\]

V is an admissible RKHS of vector fields.

Deformation as a flow of vector field

$$\left\{\begin{array}{rl}\partial_t \varphi_t &= v_t \circ \varphi_t\\ \varphi_0&= \mathrm{Id}\end{array}\right.$$

\(v_t \in V, \forall t\in [0,1]\)

Definition of \(V\)?

Anton François - 04/06/2024

\(G\) is a group of diffeomorphisms

The deformation defined from the ordinary differential equation:

\[\partial_t \varphi_t = v_t \circ \varphi_t; \quad \varphi_0 = \mathrm{Id}\]

with \(v_t \in V,\forall t\in [0,1]\),  is a diffeomorphism. We note \(\varphi^v \in G\) such a diffeomorphism.

\(G\) := Space of Deformations

Deformation as a flow of vector field

Anton François - 04/06/2024

\[\partial_t \varphi_t = v_t \circ \varphi_t; \quad \varphi_0 = \mathrm{Id}\]

Image transport (advection):  \[\partial_t I_t = v_t \cdot \nabla I_t \]

Deformed image

\(I_t = I_0 \circ (\varphi^v)^{-1}\)

The deformation acts on images.

Geodesic := Shortest path for the exact matching:

\[\mathrm{inf}_v \int_0^1 \|v_t\|_V^2 dt\]

Anton François - 04/06/2024

\[\partial_t \varphi_t = v_t \circ \varphi_t; \quad \varphi_0 = \mathrm{Id}\]

Image transport (advection):  \[\partial_t I_t = v_t \cdot \nabla I_t \]

Deformed image

\(I_t = I_0 \circ (\varphi^v)^{-1}\)

The deformation acts on images.

Geodesic := Shortest path for the exact matching:

\[\mathrm{inf}_v \int_0^1 \|v_t\|_V^2 dt\]

Distance between two images

$$d(I,J) = \mathrm{min}_{v}  \frac12 \int_0 ^1 \|v_t \|_V^2dt,$$

$$\text{s.t. }I_0 = I;  I_1 = \int_0^1 v_t \cdot\nabla I_t dt = J$$

Anton François - 04/06/2024

The average Atlas builder.

Karcher mean : Given a group of image \(I^1,\dots,I^n\) and the Riemannian metric \(d\) we compute the template \(I\) by minimising:

$$\mathcal M(I) = \frac{1}{2n} \sum_{k=1}^{n} d(I,I_1^k)^2$$

Anton François - 04/06/2024

LDDMM can reach only images with same topology

Metamorphosis deforms images and adds intensity.

Making the registration of images B and C possible.

\[\partial_t I_t = v_t \cdot \nabla I_t\]

\[+ \mu z_t\]

Topology and appearances variations

Anton François - 04/06/2024

A first Example

Metamorphosis

Source

Target

LDDMM

Anton François - 04/06/2024

Metamorphosis

Implementation

Metamorphosis

A Metamorphosis on \(\mathcal I\) is a pair of curves \((\varphi_t, \psi_t)\), respectively on \(G\) and \(\mathcal I\), with \(\varphi_0 = \mathrm{Id}\).

\(G\) := Space of Deformations

\(\mathcal I\) := Space of images

\(\psi_t\) is the intensity changes evolution part: \(I_t = \psi_t \circ (\varphi_t)^{-1}\)

Anton François - 04/06/2024

Strategy overview

\(G\) := Space of Deformations

\(\mathcal I\) := Space of images

How to register in practice?

  1. Determine the geodesic expression by solving an exact-matching problem
  2. Relax the problem with inexact matching. Optimize through geodesic shooting.

Anton François - 04/06/2024

Exact matching formulation.

$$\left\{\begin{array}{rl}v_t &= -\frac{\rho}{\mu} K_\sigma \star  (z_t \nabla I_t)\\ \dot z_t &= -\quad \nabla \cdot (z_t v_t)  \\ \dot I_t &= -\langle v_t , \nabla I_t\rangle + \mu z_t\end{array}\right.$$

Advection equation with source
Continuity equation

By computing the Euler-Lagrange equation of the exact matching cost :

 


and doing the variation with respect to \(I\) and \(v\) we obtain this set of geodesic equations:

 

[Trouvé & Younes, 2005]

$$ E_\mathrm M (I,v) =  \frac12\int_0^1 \|v_t\|_V^2 + \rho \|z_t\|_{L_2}^2  dt \quad s.t.\ I_0 = S, I_1 = T$$

Anton François - 04/06/2024

We minimize this cost :
$$ H_\mathrm M (I,v) = \frac1 2 \left\| I_1 - T \right\|_2^2 + \frac \lambda 2\int_0^1 \|v_t\|_V^2 + \rho \|z_t\|_{L_2}^2  dt $$

 

$$ \Leftrightarrow H_\mathrm M (z_0) = \frac1 2 \left\| I_1 - T \right\|_2^2 + \frac \lambda 2\left( \|z_0\nabla I_0\|_V^2 + \rho \|z_0\|_{L_2}^2\right)   $$

\(v_0 = - \frac \rho \mu K\star (z_0 \nabla I_0) \)

\(\|v_0\|_V+ \rho \|z_0\|_{L^2} = \|v_t\|_V +\rho \|z_t\|_{L^2} ,\forall t\in [0,1]\)

Metamorphosis Optimisation

via Geodesic shooting

Anton François - 04/06/2024

Metamorphosis Optimisation

via Geodesic shooting

$$\left\{\begin{array}{rl}v_t &= -\frac{\rho}{\mu} K_\sigma \star  (z_t \nabla I_t)\\ \partial_t z_t &= -\quad \nabla \cdot (z_t v_t)  \\ \partial_t I_t &= -\langle v_t , \nabla I_t\rangle + \mu z_t\end{array}\right.$$

We minimize the inexact matching cost :
$$ H_\mathrm M (I,v) = \frac1 2 \left\| I_1 - T \right\|_2^2 + \frac \lambda 2\int_0^1 \|v_t\|_V^2 + \rho \|z_t\|_{L_2}^2  dt $$

 

Geodesic Integration

\(z_0\)

\(I_1\)

Step 1:

Step 2:

We iterate over two steps:

\(\nabla H_M\) and adjoint equations computed

with                     auto differentiation.

Anton François - 04/06/2024

Lagrangian Formulation

$$x'(t) = v(t,x)$$

Lagrangian scheme

Not suitable for images

Eulerian scheme

\(I_{t+\delta_t} = I_t - \delta_t(v_t \times\nabla I_t)\)

Eulerian Formulation

$$\partial_t I(t,x) = - v(t,x) \cdot \nabla I(t,x)$$

Integration of the geodesics equations

Anton François - 04/06/2024

Schemes stability

Field aberations

We have to augment the number of time steps -> slow

Anton François - 04/06/2024

Semi-Lagrangian scheme principle

\(\partial_t I_t = v_t \cdot \nabla I_t + \mu z_t\)

Semi-Lagrangian scheme

\(I_{t+\delta_t} = \mathrm{Interp}(I_t,\varphi^{v_t}) + \delta_t \mu z_t\)

Anton François - 04/06/2024

Schemes stability

Image integration more stable

residual instabilities

Anton François - 04/06/2024

Schemes stability

Stable image

 Stable residual

Semi-Lagrangian scheme on residual

\(z_{t+\delta_t} = \mathrm{Interp}(z_t,\varphi^{v_t}) - \delta_t  z_t \mathrm{div}(v_t)\)

\(\partial_t z_t = - \mathrm{div} (z_t v_t)\)

- Full semi-Lagrangian -

Anton François - 04/06/2024

github.com/antonfrancois/Demeter_metamorphosis
  • The semi-Lagrangian scheme is more stable
  •  Open-Source Metamorphosis on the GPU, with autodiff.
  • Made for prototyping

Anton François - 04/06/2024

Problem solved ?

Metamorphosis

Source

Target

LDDMM

$$\rho = 1$$

$$\rho = 80$$

$$\rho = 10$$

$$ E_\mathrm M (I,v) =  \frac12\int_0^1 \|v_t\|_V^2 + \rho \|z_t\|_{L_2}^2  dt \quad s.t.\ I_0 = S, I_1 = T$$

Anton François - 04/06/2024

Constrained

Metamorphosis

Registration with topological changes

Healthy brain

 Brain with a glioblastoma

Anton François - 04/06/2024

Glioma registration problem

  • Necrosis : topological difference
  • Mass effect : morphological difference
  • Oedema : appearance difference 
  • Brain natural differences

MNI template

ET - GD enhancing tumour

ED - Peritumoural edematous/invaded tisue

NRC - Necrotic Tumour Core

Anton François - 04/06/2024

State of the art

            For glioma registration:

  • Cost-Function Masking (CFM) [Brett et al., 2001]
  • Inpainting method [Sdika and Pelletier, 2009]
  • Geometric Metamorphosis [Niethammer et al., 2012]
  • GLISTR: biophysical models to perform registration. [Gooya et al., 2011; Ali et al., 2012]
  • Deep-Learning: [Bône et al., 2020; Han et al., 2020b; Shu and et al, 2018; Wang et al., 2023]

LDDMM [Avants et al., 2008; Beg et al., 2005; Zhang and Fletcher, 2018] &

Metamorphosis [Holm et al., 2009; Trouvé and Younes, 2005]

We will base our registration on the methods:

Anton François - 04/06/2024

Problem solved ?

\(\rho\) and \(\mu\) control ratio between intensity changes and deformation

small intensity changes
big intensity changes

Anton François - 04/06/2024

Problem solved ?

small intensity changes

big intensity changes

NO !

Residual entanglement!

Anton François - 04/06/2024

Weighted Metamorphosis

$$\left\{\begin{array}{rl}v_t &= -\frac{\rho}{\mu} K_\sigma \star  (z_t \nabla I_t)\\ \dot z_t &= \quad - \nabla \cdot (z_t v_t)  \\ \dot I_t &= - v_t  \cdot \nabla I_t + \mu M_t z_t\end{array}\right.$$

Let \((M_t)_{t\in [0,1]}\) be a continuous temporal mask. By computing the Euler-Lagrange equation of the exact matching cost :


$$E_{\mathrm{WM}}(I,v) = \frac 12\int_0^1\|v_t\|_V^2 + \rho\langle z_t, M_t z_t \ \ \rangle_{L^2} dt \quad s.t.\ I_0 = S, I_1 = T  $$
and doing the variation with respect to \(I\) and \(v\) we obtain this set of geodesic equations:

 

\(\langle z_t, M_t z_t \rangle_{L^2}\)

\(M_t\)

Anton François - 04/06/2024

Source

Target

LDDMM

Metamorphosis

WM

A static mask gets stuck

Anton François - 04/06/2024

Weighted Metamorphosis

with a growing mask.

1. We set \(M_1\) as the topological difference segmentation.

2. We initialise \(M_0\) as a small ball at its center.

3. We register \(M_0\) to \(M_1\) using LDDMM.

Simple and realistic prior modelling:

Anton François - 04/06/2024

Source

Target

WM

WM w. Growing mask

Weighted Metamorphosis

with a growing mask.

Anton François - 04/06/2024

With textured images,

no mass effect is produced

WM fails on more realistic images

Anton François - 04/06/2024

\(M_t\) : Adding intensities

Oriented Metamorphosis

\(P_t\): Indicates where the vector field should be followed

\(w_t\): vector field to follow

We want to force the registration to follow the LDDMM field.

Anton François - 04/06/2024

Constrained Metamorphosis

Let \((M_t)_{t\in [0,1]}\) and \((P_t)_{t\in [0,1]}\) be two continuous temporal masks and \(w_t \in V\), an admissible vector field.

By computing the Euler-Lagrange equation of the exact matching cost:
$$ E_{\mathrm{CM}}(I,v) = \int_0^1 \|v_t\|_V^2 + \rho \langle z_t, M_t z_t \rangle_{L^2} -\gamma  \langle v_t , P_tw_t\rangle_{L_2}  dt $$

 

Oriented & Weighted

\(s.t., I_0 = S, I_1 = T\)

Anton François - 04/06/2024

Constrained Metamorphosis

Let \((M_t)_{t\in [0,1]}\) and \((P_t)_{t\in [0,1]}\) be two continuous temporal masks and \(w_t \in V\), an admissible vector field.

By computing the Euler-Lagrange equation of the exact matching cost:
$$ E_{\mathrm{WM}}(I,v) = \int_0^1 \|v_t\|_V^2 + \rho \langle z_t, M_t z_t \rangle_{L^2} +\gamma  \langle v_t , P_tw_t\rangle_{L_2}  dt $$

 

Oriented & Weighted

\(s.t., I_0 = S, I_1 = T\)

\[\gamma  \langle v_t , P_tw_t\rangle_{L_2}\]

Oriented Norm:

We seek to estimate \(v_t\) similar to \(w_t\) where the mask \(P_t\) is positive.

Anton François - 05/03/2024

Constrained Metamorphosis

Let \((M_t)_{t\in [0,1]}\) and \((P_t)_{t\in [0,1]}\) be two continuous temporal masks and \(w_t \in V\), an admissible vector field.

By computing the Euler-Lagrange equation of the exact matching cost:
$$ E_{\mathrm{CM}}(I,v) = \int_0^1 \|v_t\|_V^2 + \rho \langle z_t, M_t z_t \rangle_{L^2} -\gamma  \langle v_t , P_tw_t\rangle_{L_2}  dt $$
and doing the variation with respect to \(I\) and \(v\) we obtain this set of geodesic equations:

 

Oriented & Weighted

\(s.t., I_0 = S, I_1 = T\)

Theorem:

$$\left\{\begin{array}{rl} v_t &= K \star \left(\frac{-1}{\mu(1+\gamma P_t)} z_t\nabla I_t + \frac{\gamma P_t}{1 + \gamma P_t} w_t \right)\\ \dot z_t &= -\quad \nabla \cdot (z_t v_t)  \\ \dot I_t &= - v_t \cdot\nabla I_t + \mu M_t z_t\end{array}\right.$$

\(\frac{\gamma P_t}{1+\gamma P_t}\)

$$\frac{-1}{\mu(1+\gamma P_t)}$$

Anton François - 05/03/2024

CM

WM

\(I_t\)

\(I_t\) & \(\varphi^{v_t}\)

\(z_t\)

Constrained Metamorphosis

Results on ToyExamples

Anton François - 04/06/2024

On real data: BraTS 2021

  • Big data-set
  • 4 modalities
  • Glioblastoma ground truth segmentation

Registration validation using manually segmented ventricles (40 subjects).

 

Registered ventricles overlap measured with DICE score.

Anton François - 04/06/2024

Constrained Metamorphosis

Weighted Metamorphosis

Qualitative results

Anton François - 04/06/2024

Quantitative Results:

Lower the better
Higher the better

Anton François - 05/03/2024

BraTSReg pré- to post- operative registration

Lower the better
  • Big datasets of the same patients before and after surgery
  • Provides landmarks for registration validation

Anton François - 05/03/2024

Constrained Metamorphosis

conclusion & perspective

Framework to add priors into Metamorphosis

Slower because of the increasing complexity

Anton François - 05/03/2024

Constrained Metamorphosis

conclusion & perspective

Framework to add priors into Metamorphosis

We have shown that growth has to drive registration

Implement Deep-Learning Version.

Prior modelisation: We can incorporate more complex glioma model (e.g., GLISTR [Gooya et al.]) or a growth model [Kaltenmark, 2016].

Versatile: can be used for healthy/pathological or pathological/pathological applications or others.

Automatic prior selection

Anton François - 05/03/2024

Future work

ANR :   Radio-AIDE

Problematic: Radiotherapy (RT) is one of the most important treatments of brain tumours. A pre-analysis of 34 patients showed a cognitive degeneration for 97% of them after 1 year.

[J. Jacob, 2019; M. Ribeiro 2020]

Database: 224 + 150 patients - pre/post RT, followed for at least 12 months every 2-3 months - if survival.

Longitudinal AI-based segmentation: of post-RT white-matter hyperintensities (WHM) and their evolutions

  • Will provide lesion segmentation probability map

We aim to interpolate those maps using Metamorphosis to characterize the White MH evolution patterns

Anton François - 04/06/2024

Metamorphosis on Manifolds

We can also apply Metamorphosis on objects with values into a Manifold.

Metamorphosis on the Probability simplex

The standard \(n\)-Simplex is the subset of \(\mathbb R^{n+1}\) given by

$$\Delta^n = \left\{p \in \mathbb R^{n+1} : \forall i \in \{1,\cdots,n+1\}, p_i > 0; \sum_{i=1}^{n+1} p_i = 1\right\}.$$

A path on the 2-Simplex

fig from [Jasminder, 2020]

Why the simplex rather than images:

  • pixel colour does have a "meaning"
  • Does not change depending on the preprocessing => Data confidence increased
  • notion of uncertainty

Anton François - 04/06/2024

Let \(q\) be the "simplex image", (\(q(x) \in \Delta^n\)) and \(\tilde q : \Delta^n \mapsto S^n = \sqrt q\) the isometry from the simple on the sphere. We set its evolution such that:

\[\partial_t\tilde q = -\sqrt{\rho} \nabla \tilde q \cdot v + \sqrt{1 - \rho} z;  \qquad\rho \in \mathbb R\]

Let \(H\) be the Hamiltonian defined such that,

\[H(\tilde q,p,v,z) =  (p|\partial_t \tilde q) - \frac 12\|v\|_V^2 -\frac 12\|z\|_2^2\]

 By computing the variations of H with respect to \(\tilde q,p,v,z\) we retrieve the geodesic equations

 

$$\left\{\begin{array}{rl} \dot {\tilde q_t} &= - \sqrt{\rho} \nabla  \tilde q_t \cdot v_t + \sqrt{1 -\rho} z_t\\ \dot p_t &= - \sqrt{\rho} \mathrm{div}(p_t \otimes v_t) - \sqrt{1 -\rho}<p_t, \tilde q_t>z_t\\ z_t &= \sqrt{1 - \rho} (p_t - (\sum_{i=1}^{n+1} p_{t,i} \tilde q_{t,i})\tilde q_t)\\ v_t &= - \sqrt{\rho} K_V\left(\sum_{i=1}^{n+1} p_{t,i}\nabla \tilde q_{t,i} \right)\end{array}\right.$$

Metamorphosis on the Probability simplex

Metamorphosis on the Probability simplex

Conclusion & Perspective

Overall outcomes  of my PhD

 First open-source implementation of Metamorphosis, with novel integration scheme and GPU support.

Framework to register complex medical images with increased explainability using a simplitistic model.

Expecting better registrations using M on segmentation.

Published Articles:

  1. A. François, P. Gori, and J. Glaunès. Metamorphic image registration using a semi-lagrangian scheme. In SEE GSI, 2021
  2. A. François, M. Maillard, C. Oppenheim, J. Pallud, I. Bloch, P. Gori, and J. Glaunès. Weighted metamorphosis for registration of images with different topologies. In WBIR, pages 8–17, 2022
  3. M. Maillard, A. François, J. Glaunès, I. Bloch, and P. Gori. A deep residual learning
    implementation of metamorphosis.
     In IEEE ISBI, 2022
  4. A. François and R. Tinarrage, Train-Free Segmentation in MRI with Cubical Persistent Homology, La Mathematica, Jan. 2024, Preprint.

Th

an

k

You !

Made with Slides.com