Anton FRANÇOIS
Introduction
Point clouds & Landmarks
Images
Constrained
Metamorphosis
Modulated
Metamorphosis
mesh
MRImages
spatial transcriptomic
Diffusion Tensor Imaging (DTI)
Diffeomorphic image registration:
Finding a temporal smooth one-to-one
(non-linear) deformation to be biologically plausible (no holes, shearing, tearing...)
Source
Target
Automatic non-linear
matching
LDDMM: Large Diffeomorphic Deformation Metric Mapping
J. Sassen, 2024
J. Sassen, 2024
J. Sassen, 2024
(Point clouds & Landmarks)
\[v(x) = \sum_{k=1}^N K(x, c_k)\alpha_k \]
\(c_1\)
\(\alpha_1\)
To this end, we make the control points \(c_k\) and weights \(\alpha_k\) to depend on a “time” \(t \in [0,1]\) that plays the role of a variable of integration.
\[ v(t,x) = \sum_{k=1}^{N} K(x, c_k(t)) \alpha_k(t) \]
a particule \(x\) follows the integral curve according to the PDEs
\[\dot x(t) = \frac{dx_t}{dt} = v(t,x(t)), \qquad x(0) = x_0\]
\[\dot c(t) = K(c(t), c(t)) \alpha (t), \qquad c(0) = c_0 \]
the transformation is uniquely caracterized by the set of initials condition \(\{x_0, c_0, \alpha_0\}\).
Given two vectors fields
\[v_1 = \sum_i K(\quad , c_i)\alpha_i;\qquad v_2 = \sum_j K(\quad, c_j') \beta_j \]
we define the scalar product
\[\langle v_1, v_2 \rangle_V = \sum_i \sum_j \alpha_i^\top K(c_i, c'_j) \beta_j \]
and the norm \(V\):
\[\|v\|_V^2 = \langle v, v \rangle_V \]
Let \(V\) be the Reproducing Kernel Hilbert Space (RKHS) of vector fields whose kernel is \(K\). We denote \(L: V \rightarrow V^*\) the Riesz operator such that \[\|v\|^2_V = ( Lv,v).\]
V is an admissible RKHS of vector fields.
\[\langle S, S' \rangle_{W^*} = \sum_i \sum_j K(c_i, c_j') \frac{(n_i ^\top n_j')^2}{|n_i| |n'_j|}\]
\[d_W(S, S') = \|S - S'\|_{W^*}^2 = \langle S, S \rangle_{W^*} + \langle S', S' \rangle_{W^*} - 2 \langle S, S' \rangle_{W^*}\]
\[\langle S, S' \rangle_{W^*} = \sum_i \sum_j K(c_i, c_j') \frac{(n_i ^\top n_j')^2}{|n_i| |n'_j|}\]
\[d_W(S, S') = \|S - S'\|_{W^*}^2 = \langle S, S \rangle_{W^*} + \langle S', S' \rangle_{W^*} - 2 \langle S, S' \rangle_{W^*}\]
\(c_i\)
\(n_i\)
\(n_i\)
\(c_i\)
\[\langle S, S' \rangle_{W^*} = \sum_i \sum_j K(c_i, c_j') \frac{(n_i ^\top n_j')^2}{|n_i| |n'_j|}\]
\[d_W(S, S') = \|S - S'\|_{W^*}^2 = \langle S, S \rangle_{W^*} + \langle S', S' \rangle_{W^*} - 2 \langle S, S' \rangle_{W^*}\]
\(n_i\)
\(n_j'\)
\[\langle S, S' \rangle_{W^*} = \sum_i \sum_j K(c_i, c_j') \frac{(n_i ^\top n_j')^2}{|n_i| |n'_j|}\]
\[d_W(S, S') = \|S - S'\|_{W^*}^2 = \langle S, S \rangle_{W^*} + \langle S', S' \rangle_{W^*} - 2 \langle S, S' \rangle_{W^*}\]
Results
Graph : \(G(s) := \{(t,s(t)) : t \in I\}\)
Solved the problem by choosing a well crafted kernel:
\[ K_G((t,x),(t',x')) = \left(\begin{matrix} c_0 K_{\mathrm{time}} & 0 \\ 0 & c_1K_{\mathrm{space}} \end{matrix}\right)\]
(Images)
Lagrangian Formulation
$$x'(t) = v(t,x)$$
Lagrangian scheme
Not suitable for images
Eulerian scheme
\(I_{t+\delta_t} = I_t - \delta_t(v_t \times\nabla I_t)\)
Eulerian Formulation
$$\partial_t I(t,x) = - v(t,x) \cdot \nabla I(t,x)$$
\(\partial_t I_t = v_t \cdot \nabla I_t\)
Semi-Lagrangian scheme
\(I_{t+\delta_t} = \mathrm{Interp}(I_t,\varphi^{v_t})\)
\(G\) is a group of diffeomorphisms
The deformation defined from the ordinary differential equation:
\[\partial_t \varphi_t = v_t \circ \varphi_t; \quad \varphi_0 = \mathrm{Id}\]
with \(v_t \in V,\forall t\in [0,1]\), is a diffeomorphism. We note \(\varphi^v \in G\) such a diffeomorphism.
\(G\) := Space of Deformations
\[\partial_t \varphi_t = v_t \circ \varphi_t; \quad \varphi_0 = \mathrm{Id}\]
Image transport (advection): \[\partial_t I_t = v_t \cdot \nabla I_t \]
Deformed image
\(I_t = I_0 \circ (\varphi^v)^{-1}\)
Geodesic := Shortest path for the exact matching:
\[\mathrm{inf}_v \int_0^1 \|v_t\|_V^2 dt\]
LDDMM can reach only images with same topology
Metamorphosis deforms images and adds intensity.
Making the registration of images B and C possible.
\[\partial_t I_t = v_t \cdot \nabla I_t\]
\[+ \mu z_t\]
\[\left\{\begin{array}{rl} v &= - \sqrt{ \rho } K_{V} (p \nabla I)\\ \dot{p} &= -\sqrt{ \rho } \nabla \cdot (pv) \\ z &= \sqrt{ 1 - \rho } p \\ \dot{I} &= - \sqrt{ \rho } v_{t} \cdot\nabla I_{t} + \sqrt{ 1-\rho } z.\end{array}\right. \]
Advection equation with sourceContinuity equation
Given the image evolution model
\[\dot I_t = - \sqrt{\rho}v_t \cdot \nabla I_t + \sqrt{1 - \rho} z_t; \qquad \rho \in [0,1]\]
and the Hamiltonian :
$$H(I,p,v,z) = - (p |\dot{ I}) - \frac{1}{2} \|v\|^2_{V} - \frac{1}{2}\|z\|^2_{2}. $$
we get the optimal trajectory as a geodesic of the form:
Healthy brain
Brain with a glioblastoma
Anton François - 23/05/2023
Registration validation using manually segmented ventricles (40 subjects).
Registered ventricles overlap measured with DICE score.
Let \((M_t)_{t\in [0,1]}\) and \((P_t)_{t\in [0,1]}\) be two continuous temporal masks and \(w_t \in V\), an admissible vector field.
By computing the Euler-Lagrange equation of the exact matching cost:
\[ E_{\mathrm{CM}}(I,v) = \int_0^1 \|v_t\|_V^2 + \rho \langle z_t, M_t z_t \rangle_{L^2} +\gamma\| P_t(v_t - w_t) \|_V^2 dt \]
and doing the variation with respect to \(I\) and \(v\) we obtain this set of geodesic equations:
Oriented & Weighted
\(s.t., I_0 = S, I_1 = T\)
Theorem:
$$\left\{\begin{array}{rl} v_t &= - \frac{\rho}{\mu (1 + \gamma P_t)} K \star (z_t\nabla I_t) + \frac{\gamma P_t }{1 + \gamma P_t} w_t\\ \dot z_t &= -\quad \nabla \cdot (z_t v_t) \\ \dot I_t &= - v_t \cdot\nabla I_t + \mu M_t z_t\end{array}\right.$$
\(\frac{\rho}{\mu(1+\gamma P_t)}\)
\(\frac{\gamma P_t}{1+\gamma P_t}\)
\(M_t\)
\(M_t\)
\(\|P_t(v_t - w_t) \|^2_V\)
Results on ToyExamples
LDDMM
Classical Metamorphosis
source target
CM
WM
\(I_t\)
\(I_t\) & \(\varphi^{v_t}\)
\(z_t\)
Results on ToyExamples
Constrained Metamorphosis
Weighted Metamorphosis
Lower the better
Higher the better
The standard \(n\)-Simplex is the subset of \(\mathbb R^{n+1}\) given by
$$\Delta^n = \left\{p \in \mathbb R^{n+1} : \forall i \in \{1,\cdots,n+1\}, p_i > 0; \sum_{i=1}^{n+1} p_i = 1\right\}.$$
A path on the 2-Simplex fig from [Jasminder, 2020]
Data from :
segmented MRI
Table with the values of \(\rho\) to transition from one class to another.
Up to now, the evolution of the image was described by:
\[\dot{q}_t = -\sqrt{1- \rho} \, v_t \cdot \nabla q_t + \sqrt{\rho} \, z_t., \rho \in \mathbb R\]
\(R =\)
\((\)
\()\)
Up to now, the evolution of the image was described by:
\[\dot{q}_t = -\sqrt{\rho} \, v_t \cdot \nabla q_t + \sqrt{1 - \rho} \, z_t., \rho \in \mathbb R\]
Let \( R \) be the control allocation matrix (CAM), such that each entry \( R(i,j) \) indicates the value of \( \rho \) for the transition from class \( i \) to class \( j \).
For \( f, g \in \Delta^d \), we define:
\[\rho(x, f, g) = \sum_{i \in \mathcal{C}} \sum_{j \in \mathcal{C}} f^i g^j R(i,j) = \left\langle f, gR \right\rangle.\]
We then introduce a new dynamics:
\[\dot{q}_t = -\sqrt{\tilde{\rho}_t} \, v_t \cdot \nabla q_t + \sqrt{1 - \tilde{\rho}_t} \, z_t,\]
where \( \tilde{\rho}_t = \rho(x, q_t, T) \).