how to start to teach the machine
@ArkadiuszKondas
ARKADIUSZ KONDAS
Lead Software Architect
@ Proget Sp. z o.o.
Poland
Zend Certified Engineer
Code Craftsman
Blogger
Ultra Runner
@ ArkadiuszKondas
arkadiuszkondas.com
Zend Certified Architect
Source: https://blogs.adobe.com/digitalmarketing/analytics/shopping-for-kpis-market-basket-analysis-for-web-analytics-data/
https://github.com/tensorflow/models/tree/master/im2txt
http://articles.concreteinteractive.com/nicole-kidmans-fake-nose/
The name machine learning was coined in 1959
Source: https://www.slideshare.net/Simplilearn/what-is-machine-learning-machine-learning-basics-machine-learning-algorithms-simplilearn
Source: https://www.slideshare.net/Simplilearn/what-is-machine-learning-machine-learning-basics-machine-learning-algorithms-simplilearn
Source: https://www.marutitech.com/businesses-reinforcement-learning/
Source: https://www.slideshare.net/Simplilearn/what-is-machine-learning-machine-learning-basics-machine-learning-algorithms-simplilearn
Can you predict realty price fluctuations in Russia’s volatile economy?
id,timestamp,full_sq,life_sq,floor,max_floor,material,build_year,num_room,kitch_sq,state,product_type,sub_area,area_m,raion_popul,green_zone_part,indust_part,children_preschool,preschool_quota,preschool_education_centers_raion,children_school,school_quota,school_education_centers_raion,school_education_centers_top_20_raion,hospital_beds_raion,healthcare_centers_raion,university_top_20_raion,sport_objects_raion,additional_education_raion,culture_objects_top_25,culture_objects_top_25_raion,shopping_centers_raion,office_raion,thermal_power_plant_raion,incineration_raion,oil_chemistry_raion,radiation_raion,railroad_terminal_raion,big_market_raion,nuclear_reactor_raion,detention_facility_raion,full_all,male_f,female_f,young_all,young_male,young_female,work_all,work_male,work_female,ekder_all,ekder_male,ekder_female,0_6_all,0_6_male,0_6_female,7_14_all,7_14_male,7_14_female,0_17_all,0_17_male,0_17_female,16_29_all,16_29_male,16_29_female,0_13_all,0_13_male,0_13_female,raion_build_count_with_material_info,build_count_block,build_count_wood,build_count_frame,build_count_brick,build_count_monolith,build_count_panel,build_count_foam,build_count_slag,build_count_mix,raion_build_count_with_builddate_info,build_count_before_1920,build_count_1921-1945,build_count_1946-1970,build_count_1971-1995,build_count_after_1995,ID_metro,metro_min_avto,metro_km_avto,metro_min_walk,metro_km_walk,kindergarten_km,school_km,park_km,green_zone_km,industrial_km,water_treatment_km,cemetery_km,incineration_km,railroad_station_walk_km,railroad_station_walk_min,ID_railroad_station_walk,railroad_station_avto_km,railroad_station_avto_min,ID_railroad_station_avto,public_transport_station_km,public_transport_station_min_walk,water_km,water_1line,mkad_km,ttk_km,sadovoe_km,bulvar_ring_km,kremlin_km,big_road1_km,ID_big_road1,big_road1_1line,big_road2_km,ID_big_road2,railroad_km,railroad_1line,zd_vokzaly_avto_km,ID_railroad_terminal,bus_terminal_avto_km,ID_bus_terminal,oil_chemistry_km,nuclear_reactor_km,radiation_km,power_transmission_line_km,thermal_power_plant_km,ts_km,big_market_km,market_shop_km,fitness_km,swim_pool_km,ice_rink_km,stadium_km,basketball_km,hospice_morgue_km,detention_facility_km,public_healthcare_km,university_km,workplaces_km,shopping_centers_km,office_km,additional_education_km,preschool_km,big_church_km,church_synagogue_km,mosque_km,theater_km,museum_km,exhibition_km,catering_km,ecology,green_part_500,prom_part_500,office_count_500,office_sqm_500,trc_count_500,trc_sqm_500,cafe_count_500,cafe_sum_500_min_price_avg,cafe_sum_500_max_price_avg,cafe_avg_price_500,cafe_count_500_na_price,cafe_count_500_price_500,cafe_count_500_price_1000,cafe_count_500_price_1500,cafe_count_500_price_2500,cafe_count_500_price_4000,cafe_count_500_price_high,big_church_count_500,church_count_500,mosque_count_500,leisure_count_500,sport_count_500,market_count_500,green_part_1000,prom_part_1000,office_count_1000,office_sqm_1000,trc_count_1000,trc_sqm_1000,cafe_count_1000,cafe_sum_1000_min_price_avg,cafe_sum_1000_max_price_avg,cafe_avg_price_1000,cafe_count_1000_na_price,cafe_count_1000_price_500,cafe_count_1000_price_1000,cafe_count_1000_price_1500,cafe_count_1000_price_2500,cafe_count_1000_price_4000,cafe_count_1000_price_high,big_church_count_1000,church_count_1000,mosque_count_1000,leisure_count_1000,sport_count_1000,market_count_1000,green_part_1500,prom_part_1500,office_count_1500,office_sqm_1500,trc_count_1500,trc_sqm_1500,cafe_count_1500,cafe_sum_1500_min_price_avg,cafe_sum_1500_max_price_avg,cafe_avg_price_1500,cafe_count_1500_na_price,cafe_count_1500_price_500,cafe_count_1500_price_1000,cafe_count_1500_price_1500,cafe_count_1500_price_2500,cafe_count_1500_price_4000,cafe_count_1500_price_high,big_church_count_1500,church_count_1500,mosque_count_1500,leisure_count_1500,sport_count_1500,market_count_1500,green_part_2000,prom_part_2000,office_count_2000,office_sqm_2000,trc_count_2000,trc_sqm_2000,cafe_count_2000,cafe_sum_2000_min_price_avg,cafe_sum_2000_max_price_avg,cafe_avg_price_2000,cafe_count_2000_na_price,cafe_count_2000_price_500,cafe_count_2000_price_1000,cafe_count_2000_price_1500,cafe_count_2000_price_2500,cafe_count_2000_price_4000,cafe_count_2000_price_high,big_church_count_2000,church_count_2000,mosque_count_2000,leisure_count_2000,sport_count_2000,market_count_2000,green_part_3000,prom_part_3000,office_count_3000,office_sqm_3000,trc_count_3000,trc_sqm_3000,cafe_count_3000,cafe_sum_3000_min_price_avg,cafe_sum_3000_max_price_avg,cafe_avg_price_3000,cafe_count_3000_na_price,cafe_count_3000_price_500,cafe_count_3000_price_1000,cafe_count_3000_price_1500,cafe_count_3000_price_2500,cafe_count_3000_price_4000,cafe_count_3000_price_high,big_church_count_3000,church_count_3000,mosque_count_3000,leisure_count_3000,sport_count_3000,market_count_3000,green_part_5000,prom_part_5000,office_count_5000,office_sqm_5000,trc_count_5000,trc_sqm_5000,cafe_count_5000,cafe_sum_5000_min_price_avg,cafe_sum_5000_max_price_avg,cafe_avg_price_5000,cafe_count_5000_na_price,cafe_count_5000_price_500,cafe_count_5000_price_1000,cafe_count_5000_price_1500,cafe_count_5000_price_2500,cafe_count_5000_price_4000,cafe_count_5000_price_high,big_church_count_5000,church_count_5000,mosque_count_5000,leisure_count_5000,sport_count_5000,market_count_5000,price_doc
1,2011-08-20,43,27,4,NA,NA,NA,NA,NA,NA,Investment,Bibirevo,6407578.1,155572,0.189727117,6.99893e-5,9576,5001,5,10309,11065,5,0,240,1,0,7,3,no,0,16,1,no,no,no,no,no,no,no,no,86206,40477,45729,21154,11007,10147,98207,52277,45930,36211,10580,25631,9576,4899,4677,10309,5463,4846,23603,12286,11317,17508,9425,8083,18654,9709,8945,211,25,0,0,0,2,184,0,0,0,211,0,0,0,206,5,1,2.590241095,1.131259906,13.57511887,1.131259906,0.145699552,0.17797535,2.158587074,0.600973099,1.080934313,23.68346,1.804127,3.633334,5.419893032,65.03871639,1,5.419893032,6.905892968,1,0.274985143,3.299821714,0.992631058,no,1.42239141,10.9185867,13.10061764,13.67565705,15.15621058,1.422391404,1,no,3.830951404,5,1.305159492,no,14.23196091,101,24.2924061,1,18.152338,5.718518835,1.210027392,1.062513046,5.814134663,4.308127002,10.81417151,1.676258313,0.485841388,3.065047099,1.107594209,8.148590774,3.516512911,2.392353035,4.248035887,0.974742843,6.715025787,0.884350021,0.648487637,0.637188832,0.947961657,0.17797535,0.625783434,0.628186549,3.932040333,14.05304655,7.389497904,7.023704919,0.516838085,good,0,0,0,0,0,0,0,NA,NA,NA,0,0,0,0,0,0,0,0,0,0,0,1,0,7.36,0,1,30500,3,55600,19,527.78,888.89,708.33,1,10,4,3,1,0,0,1,2,0,0,6,1,14.27,6.92,3,39554,9,171420,34,566.67,969.7,768.18,1,14,11,6,2,0,0,1,2,0,0,7,1,11.77,15.97,9,188854,19,1244891,36,614.29,1042.86,828.57,1,15,11,6,2,1,0,1,2,0,0,10,1,11.98,13.55,12,251554,23,1419204,68,639.68,1079.37,859.52,5,21,22,16,3,1,0,2,4,0,0,21,1,13.09,13.31,29,807385,52,4036616,152,708.57,1185.71,947.14,12,39,48,40,9,4,0,13,22,1,0,52,4,5850000
2,2011-08-23,34,19,3,NA,NA,NA,NA,NA,NA,Investment,Nagatinskij Zaton,9589336.912,115352,0.372602044,0.049637257,6880,3119,5,7759,6237,8,0,229,1,0,6,1,yes,1,3,0,no,no,no,no,no,no,no,no,76284,34200,42084,15727,7925,7802,70194,35622,34572,29431,9266,20165,6880,3466,3414,7759,3909,3850,17700,8998,8702,15164,7571,7593,13729,6929,6800,245,83,1,0,67,4,90,0,0,0,244,1,1,143,84,15,2,0.936699728,0.647336757,7.620630408,0.635052534,0.147754269,0.273345319,0.550689737,0.065321162,0.966479097,1.317476,4.655004,8.648587,3.411993084,40.943917,2,3.641772591,4.679744508,2,0.065263344,0.78316013,0.698081318,no,9.503405157,3.103995954,6.444333466,8.132640073,8.698054189,2.887376585,2,no,3.103995974,4,0.694535727,no,9.242585522,32,5.706113234,2,9.034641872,3.489954443,2.72429538,1.246148739,3.419574049,0.725560431,6.910567711,3.424716092,0.668363679,2.000153804,8.97282283,6.127072782,1.161578983,2.543746975,12.64987875,1.47772267,1.852560245,0.686251693,0.519311324,0.688796317,1.072315063,0.273345319,0.967820571,0.471446524,4.841543888,6.829888847,0.709260033,2.358840498,0.23028691,excellent,25.14,0,0,0,0,0,5,860,1500,1180,0,1,3,0,0,1,0,0,1,0,0,0,0,26.66,0.07,2,86600,5,94065,13,615.38,1076.92,846.15,0,5,6,1,0,1,0,1,2,0,4,2,0,21.53,7.71,3,102910,7,127065,17,694.12,1205.88,950,0,6,7,1,2,1,0,1,5,0,4,9,0,22.37,19.25,4,165510,8,179065,21,695.24,1190.48,942.86,0,7,8,3,2,1,0,1,5,0,4,11,0,18.07,27.32,12,821986,14,491565,30,631.03,1086.21,858.62,1,11,11,4,2,1,0,1,7,0,6,19,1,10.26,27.47,66,2690465,40,2034942,177,673.81,1148.81,911.31,9,49,65,36,15,3,0,15,29,1,10,66,14,6000000
3,2011-08-27,43,29,2,NA,NA,NA,NA,NA,NA,Investment,Tekstil'shhiki,4808269.831,101708,0.112559644,0.118537385,5879,1463,4,6207,5580,7,0,1183,1,0,5,1,no,0,0,1,no,no,no,yes,no,no,no,no,101982,46076,55906,13028,6835,6193,63388,31813,31575,25292,7609,17683,5879,3095,2784,6207,3269,2938,14884,7821,7063,19401,9045,10356,11252,5916,5336,330,59,0,0,206,4,60,0,1,0,330,1,0,246,63,20,3,2.120998901,1.637996285,17.3515154,1.445959617,0.049101536,0.158071895,0.374847751,0.453172405,0.939275144,4.91266,3.381083,11.99648,1.277658039,15.33189647,3,1.277658039,1.701419537,3,0.328756044,3.945072522,0.468264622,no,5.60479992,2.927487097,6.963402995,8.054252314,9.067884956,0.647249803,3,no,2.927487099,4,0.70069112,no,9.540544478,5,6.710302485,3,5.777393501,7.50661249,0.772216104,1.60218297,3.682454651,3.562187704,5.75236835,1.375442778,0.733101062,1.239303854,1.978517187,0.767568769,1.952770629,0.621357002,7.682302975,0.097143527,0.841254102,1.510088854,1.48653302,1.543048836,0.391957389,0.158071895,3.178751487,0.755946015,7.92215157,4.273200485,3.156422843,4.958214283,0.190461977,poor,1.67,0,0,0,0,0,3,666.67,1166.67,916.67,0,0,2,1,0,0,0,0,0,0,0,0,0,4.99,0.29,0,0,0,0,9,642.86,1142.86,892.86,2,0,5,2,0,0,0,0,1,0,0,5,3,9.92,6.73,0,0,1,2600,14,516.67,916.67,716.67,2,4,6,2,0,0,0,0,4,0,0,6,5,12.99,12.75,4,100200,7,52550,24,563.64,977.27,770.45,2,8,9,4,1,0,0,0,4,0,0,8,5,12.14,26.46,8,110856,7,52550,41,697.44,1192.31,944.87,2,9,17,9,3,1,0,0,11,0,0,20,6,13.69,21.58,43,1478160,35,1572990,122,702.68,1196.43,949.55,10,29,45,25,10,3,0,11,27,0,4,67,10,5700000
4,2011-09-01,89,50,9,NA,NA,NA,NA,NA,NA,Investment,Mitino,12583535.69,178473,0.194702869,0.069753361,13087,6839,9,13670,17063,10,0,NA,1,0,17,6,no,0,11,4,no,no,no,no,no,no,no,no,21155,9828,11327,28563,14680,13883,120381,60040,60341,29529,9083,20446,13087,6645,6442,13670,7126,6544,32063,16513,15550,3292,1450,1842,24934,12782,12152,458,9,51,12,124,50,201,0,9,2,459,13,24,40,130,252,4,1.489049154,0.984536582,11.56562408,0.963802007,0.179440956,0.236455018,0.078090293,0.106124506,0.451173311,15.62371,2.01708,14.31764,4.2914325,51.49719001,4,3.816044582,5.271136062,4,0.131596959,1.579163513,1.200336487,no,2.677824281,14.60650078,17.45719794,18.30943312,19.48700542,2.677824284,1,no,2.780448941,17,1.999265421,no,17.47838035,83,6.734618018,1,27.6678632,9.522537611,6.348716334,1.767612439,11.17833328,0.583024969,27.89271688,0.811275289,0.62348431,1.950316967,6.483171621,7.385520691,4.923843177,3.549557568,8.789894266,2.163735157,10.9031613,0.622271644,0.599913582,0.934273498,0.8926743,0.236455018,1.03177679,1.561504846,15.30044908,16.99067736,16.04152067,5.02969633,0.465820158,good,17.36,0.57,0,0,0,0,2,1e3,1500,1250,0,0,0,2,0,0,0,0,0,0,0,0,0,19.25,10.35,1,11000,6,80780,12,658.33,1083.33,870.83,0,3,4,5,0,0,0,0,0,0,0,3,1,28.38,6.57,2,11000,7,89492,23,673.91,1130.43,902.17,0,5,9,8,1,0,0,1,0,0,0,9,2,32.29,5.73,2,11000,7,89492,25,660,1120,890,0,5,11,8,1,0,0,1,1,0,0,13,2,20.79,3.57,4,167000,12,205756,32,718.75,1218.75,968.75,0,5,14,10,3,0,0,1,2,0,0,18,3,14.18,3.89,8,244166,22,942180,61,931.58,1552.63,1242.11,4,7,21,15,11,2,1,4,4,0,0,26,3,13100000
5,2011-09-05,77,77,4,NA,NA,NA,NA,NA,NA,Investment,Basmannoe,8398460.622,108171,0.015233744,0.037316452,5706,3240,7,6748,7770,9,0,562,4,2,25,2,no,0,10,93,no,no,no,yes,yes,no,no,no,28179,13522,14657,13368,7159,6209,68043,34236,33807,26760,8563,18197,5706,2982,2724,6748,3664,3084,15237,8113,7124,5164,2583,2581,11631,6223,5408,746,48,0,0,643,16,35,0,3,1,746,371,114,146,62,53,5,1.257186453,0.876620232,8.266305238,0.68885877,0.247901208,0.376838057,0.258288769,0.236214054,0.392870988,10.68354,2.936581,11.90391,0.853960072,10.24752087,5,1.59589817,2.156283865,113,0.071480323,0.857763874,0.820294318,no,11.61665314,1.721833675,0.046809568,0.787593311,2.578670647,1.721833683,4,no,3.133530966,10,0.084112545,yes,1.59589817,113,1.423427954,4,6.515857089,8.671015673,1.638318096,3.632640421,4.587916559,2.60941961,9.15505713,1.969737724,0.220287667,2.544696,3.975401349,3.610753828,0.307915375,1.864637406,3.779781109,1.121702845,0.991682626,0.892667526,0.429052137,0.077900959,0.810801456,0.376838057,0.378755838,0.121680643,2.584369607,1.11248589,1.800124877,1.339652258,0.026102416,excellent,3.56,4.44,15,293699,1,45000,48,702.22,1166.67,934.44,3,17,10,11,7,0,0,1,4,0,2,3,0,3.34,8.29,46,420952,3,158200,153,763.45,1272.41,1017.93,8,39,45,39,19,2,1,7,12,0,6,7,0,4.12,4.83,93,1195735,9,445900,272,766.8,1272.73,1019.76,19,70,74,72,30,6,1,18,30,0,10,14,2,4.53,5.02,149,1625130,17,564843,483,765.93,1269.23,1017.58,28,130,129,131,50,14,1,35,61,0,17,21,3,5.06,8.62,305,3420907,60,2296870,1068,853.03,1410.45,1131.74,63,266,267,262,149,57,4,70,121,1,40,77,5,8.38,10.92,689,8404624,114,3503058,2283,853.88,1411.45,1132.66,143,566,578,552,319,108,17,135,236,2,91,195,14,16331452
6,2011-09-06,67,46,14,NA,NA,NA,NA,NA,NA,Investment,Nizhegorodskoe,7506452.02,43795,0.007670134,0.486245621,2418,852,2,2514,2012,3,0,NA,0,0,7,0,no,0,6,19,yes,no,no,yes,no,no,no,no,19940,9400,10540,5291,2744,2547,29660,15793,13867,8844,2608,6236,2418,1224,1194,2514,1328,1186,5866,3035,2831,4851,2329,2522,4632,2399,2233,188,24,0,0,147,2,15,0,0,0,188,0,5,152,25,6,6,2.735883907,1.593246481,18.37816963,1.531514136,0.145954816,0.113466218,1.073495427,1.497902638,0.256487453,7.18674,0.78033,14.07514,0.375311695,4.503740339,6,0.375311695,1.407418835,6,0.189227153,2.270725835,0.612447325,no,8.296086727,0.284868107,3.519388985,4.395057477,5.645795859,0.284868136,4,no,1.478528507,3,0.244670412,no,5.070196504,5,6.682088764,4,3.95950924,8.757686082,0.193126987,2.34156168,1.272894442,1.438003448,5.374563767,3.447863628,0.81041306,1.911842782,2.108923435,4.233094726,1.450974874,3.391116928,4.356122442,1.698723584,3.830021305,1.042261834,0.440707312,0.422357874,3.066285203,0.113466218,0.686931702,0.870446514,4.787705729,3.388809733,3.71355663,2.553423533,0.004469307,poor,0,19.42,5,227705,3,102000,7,1e3,1625,1312.5,3,0,1,2,1,0,0,0,0,0,0,0,0,0,40.27,10,275135,5,164000,9,883.33,1416.67,1150,3,1,1,3,1,0,0,3,1,0,0,1,0,0,50.64,18,431090,6,186400,14,718.18,1181.82,950,3,3,3,4,1,0,0,4,2,0,0,11,0,0.38,51.58,21,471290,14,683945,33,741.38,1258.62,1e3,4,5,13,8,2,1,0,6,5,0,0,21,1,1.82,39.99,54,1181009,29,1059171,120,737.96,1231.48,984.72,12,24,37,35,11,1,0,12,12,0,2,31,7,5.92,25.79,253,4274339,63,2010320,567,769.92,1280.08,1025,35,137,163,155,62,14,1,53,78,1,20,113,17,9100000
1 row = 1 sample = 292 columns = 291 features
price_doc: sale price (this is the target variable)
id: transaction id
timestamp: date of transaction
full_sq: total area in square meters, including loggias, balconies and other non-residential areas
life_sq: living area in square meters, excluding loggias, balconies and other non-residential areas
floor: for apartments, floor of the building
max_floor: number of floors in the building
material: wall material
build_year: year built
num_room: number of living rooms
kitch_sq: kitchen area
state: apartment condition
product_type: owner-occupier purchase or investment
sub_area: name of the district
Machine Learning library for PHP
use Phpml\Dataset\CsvDataset;
$dataset = new CsvDataset('housing.csv', 291);
$dataset->getSamples();
$dataset->getTargets();
$dataset->getColumnNames();
array(291) {
[0]=>
string(3) "635"
[1]=>
string(10) "2011-12-15"
[2]=>
string(2) "70"
[3]=>
string(2) "49"
[4]=>
string(2) "16"
...
string(2) "NA"
[11]=>
string(10) "Investment"
[12]=>
string(10) "Matushkino"
[13]=>
string(10) "4708040.47"
...
use Phpml\Preprocessing\ColumnFilter;
$datasetColumns = ['age', 'income', 'kids', 'beersPerWeek'];
$filterColumns = ['income', 'beersPerWeek'];
$samples = [
[21, 100000, 1, 4],
[35, 120000, 0, 12],
[33, 200000, 4, 0],
];
$filter = new ColumnFilter($datasetColumns, $filterColumns);
$filter->transform($samples);
/*
[[100000, 4], [120000, 12], [200000, 0]]
*/
use Phpml\Preprocessing\NumberConverter;
$samples = [
['1', '-4'],
['2.0', 3.0],
['3', '112.5'],
['5', '0.0004']
];
$targets = ['1', '1', '2', '2'];
$converter = new NumberConverter();
$converter->transform($samples, $targets);
final class NumberConverter implements Preprocessor
{
/**
* @param mixed $nonNumericPlaceholder
*/
public function __construct(
bool $transformTargets = false,
$nonNumericPlaceholder = null
)
}
use Phpml\Preprocessing\Imputer;
use Phpml\Preprocessing\Imputer\Strategy\MeanStrategy;
$samples = [
[1, null, 3, 4],
[4, 3, 2, 1],
[null, 6, 7, 8],
[8, 7, null, 5],
];
$imputer = new Imputer(null, new MeanStrategy());
$imputer->fit($samples);
$imputer->transform($samples);
/* [
[1, 2.66, 3, 4],
[4, 3, 2, 1],
[7, 6, 7, 8],
[8, 7, 6.66, 5],
]*/
use Phpml\Regression\DecisionTreeRegressor;
$model = new DecisionTreeRegressor($maxDepth = 5);
$model->train($samples, $targets);
$predictions = $model->predict($samples);
array(10) {
[0]=>
string(7) "5850000"
[1]=>
string(7) "6000000"
[2]=>
string(7) "5700000"
[3]=>
string(8) "13100000"
[4]=>
string(8) "16331452"
[5]=>
string(7) "9100000"
[6]=>
string(7) "5500000"
[7]=>
string(7) "2000000"
[8]=>
string(7) "5300000"
[9]=>
string(7) "2000000"
}
array(10) {
[0]=>
float(5478002.4543098)
[1]=>
float(4613047.2807292)
[2]=>
float(5478002.4543098)
[3]=>
float(8770788.9539153)
[4]=>
float(8770788.9539153)
[5]=>
float(6645729.5835831)
[6]=>
float(4613047.2807292)
[7]=>
float(5478002.4543098)
[8]=>
float(4613047.2807292)
[9]=>
float(4613047.2807292)
}
Train dataset != Test dataset
accuracy_score
balanced_accuracy_score
average_precision_score
brier_score_loss
f1_score
log_loss
precision_score
recall_score
jaccard_score
roc_auc_score
Classification
adjusted_mutual_info_score
adjusted_rand_score
completeness_score
fowlkes_mallows_score
homogeneity_score
mutual_info_score
normalized_mutual_info_score
v_measure_score
Clustering
explained_variance_score
max_error
mean_absolute_error
mean_squared_error
mean_squared_log_error
median_absolute_error
r2_score
Regression
This metric is best to use when targets having exponential growth, such as population counts, average sales of a commodity over a span of years etc.
MSLE: Mean squared logarithmic error
MSLE: Mean squared logarithmic error
Best from kaggle:
GradientBoosting
Test dataset: ~0.30087
Our model:
Train dataset: ~0.41242
Test dataset: ~0.31355
use Phpml\ModelManager;
$modelManager = new ModelManager();
$modelManager
->saveToFile($model, 'housing-model.phpml');
$model = $modelManager
->restoreFromFile('housing-model.phpml');
$model->predict([$sample]);
use Phpml\Regression\DecisionTreeRegressor;
use Phpml\Preprocessing\NumberConverter;
use Phpml\Pipeline;
use Phpml\Preprocessing\ColumnFilter;
use Phpml\Preprocessing\Imputer;
use Phpml\Imputer\Strategy\MeanStrategy;
$model = new Pipeline([
new ColumnFilter(
$trainDataset->getColumnNames(),
['life_sq', 'full_sq', 'floor', 'build_year']
),
new NumberConverter(true),
new Imputer(null, new MeanStrategy()),
], new DecisionTreeRegressor(5));
$model->train($samples, $targets);
use Phpml\FeatureUnion;
$union = new FeatureUnion([
new Pipeline([
new ColumnFilter($columns, ['sex']),
new LambdaTransformer(function (array $sample) {
return $sample[0];
}),
new OneHotEncoder(),
]),
new Pipeline([
new ColumnFilter($columns, ['age', 'income']),
new NumberConverter(),
new Imputer(null, new MeanStrategy()),
]),
]);
$union->fitAndTransform($samples, $targets);
AWS Lambda
mnapoli/bref
curl -X POST \
https://3qv1qfxlmj.execute-api.us-east-1.amazonaws.com/Prod/housing \
-H 'content-type: multipart/form-data;' \
-F life_sq=22 \
-F full_sq=30 \
-F floor=1 \
-F build_year=2000
php-ai/php-ml-lambda-examples
php-ai/php-ml-lambda-examples
$model = (new ModelManager())
->restoreFromFile('housing.phpml');
echo json_encode(['price' => round($model->predict([[
$_POST['life_sq'],
$_POST['full_sq'],
$_POST['floor'],
$_POST['build_year'],
]])[0])]);
$trainDataset = new CsvDataset(__DIR__.'/../data/housing-train.csv', 291);
$samples = $trainDataset->getSamples();
$targets = $trainDataset->getTargets();
$model = new Pipeline([
new ColumnFilter($trainDataset->getColumnNames(), ['life_sq', 'full_sq', 'floor', 'build_year']),
new NumberConverter(true),
new Imputer(null, new MeanStrategy()),
], new DecisionTreeRegressor());
$model->train($samples, $targets);
echo 'MSLE: ' . Regression::meanSquaredLogarithmicError($targets, $model->predict($samples)) . PHP_EOL;
$testDataset = new CsvDataset(__DIR__.'/../data/housing-test.csv', 290);
$predicted = $model->predict($testDataset->getSamples());
$lines = ['id,price_doc'];
foreach ($testDataset->getSamples() as $index => $sample) {
$lines[] = sprintf('%s,%s', $sample[0], $predicted[$index]);
}
file_put_contents(__DIR__.'/../data/housing-sub.csv', implode(PHP_EOL, $lines));
$modelManager = new ModelManager();
$modelManager->saveToFile($model, __DIR__.'/../data/housing-model.phpml');
5.1,3.8,1.6,0.2,setosa
4.6,3.2,1.4,0.2,setosa
5.3,3.7,1.5,0.2,setosa
5,3.3,1.4,0.2,setosa
7,3.2,4.7,1.4,versicolor
6.4,3.2,4.5,1.5,versicolor
6.9,3.1,4.9,1.5,versicolor
5.5,2.3,4,1.3,versicolor
5.9,3,5.1,1.8,virginica
5.1,3.5,1.4,0.2,setosa
4.9,3,1.4,0.2,setosa
4.7,3.2,1.3,0.2,setosa
4.6,3.1,1.5,0.2,setosa
5,3.6,1.4,0.2,setosa
5.4,3.9,1.7,0.4,setosa
4.6,3.4,1.4,0.3,setosa
5,3.4,1.5,0.2,setosa
4.4,2.9,1.4,0.2,setosa
4.9,3.1,1.5,0.1,setosa
5.4,3.7,1.5,0.2,setosa
4.8,3.4,1.6,0.2,setosa
4.8,3,1.4,0.1,setosa
4.3,3,1.1,0.1,setosa
5.8,4,1.2,0.2,setosa
5.7,4.4,1.5,0.4,setosa
5.4,3.9,1.3,0.4,setosa
5.1,3.5,1.4,0.3,setosa
5.7,3.8,1.7,0.3,setosa
5.1,3.8,1.5,0.3,setosa
5.4,3.4,1.7,0.2,setosa
5.1,3.7,1.5,0.4,setosa
4.6,3.6,1,0.2,setosa
5.1,3.3,1.7,0.5,setosa
4.8,3.4,1.9,0.2,setosa
5,3,1.6,0.2,setosa
5,3.4,1.6,0.4,setosa
5.2,3.5,1.5,0.2,setosa
5.2,3.4,1.4,0.2,setosa
4.7,3.2,1.6,0.2,setosa
4.8,3.1,1.6,0.2,setosa
5.4,3.4,1.5,0.4,setosa
5.2,4.1,1.5,0.1,setosa
5.5,4.2,1.4,0.2,setosa
4.9,3.1,1.5,0.1,setosa
5,3.2,1.2,0.2,setosa
5.5,3.5,1.3,0.2,setosa
4.9,3.1,1.5,0.1,setosa
4.4,3,1.3,0.2,setosa
5.1,3.4,1.5,0.2,setosa
5,3.5,1.3,0.3,setosa
4.5,2.3,1.3,0.3,setosa
4.4,3.2,1.3,0.2,setosa
5,3.5,1.6,0.6,setosa
5.1,3.8,1.9,0.4,setosa
4.8,3,1.4,0.3,setosa
5.1,3.8,1.6,0.2,setosa
4.6,3.2,1.4,0.2,setosa
5.3,3.7,1.5,0.2,setosa
5,3.3,1.4,0.2,setosa
7,3.2,4.7,1.4,versicolor
6.4,3.2,4.5,1.5,versicolor
6.9,3.1,4.9,1.5,versicolor
5.5,2.3,4,1.3,versicolor
6.5,2.8,4.6,1.5,versicolor
5.7,2.8,4.5,1.3,versicolor
6.3,3.3,4.7,1.6,versicolor
4.9,2.4,3.3,1,versicolor
6.6,2.9,4.6,1.3,versicolor
5.2,2.7,3.9,1.4,versicolor
5,2,3.5,1,versicolor
5.9,3,4.2,1.5,versicolor
6,2.2,4,1,versicolor
6.1,2.9,4.7,1.4,versicolor
5.6,2.9,3.6,1.3,versicolor
6.7,3.1,4.4,1.4,versicolor
5.6,3,4.5,1.5,versicolor
5.8,2.7,4.1,1,versicolor
6.2,2.2,4.5,1.5,versicolor
5.6,2.5,3.9,1.1,versicolor
5.9,3.2,4.8,1.8,versicolor
6.1,2.8,4,1.3,versicolor
6.3,2.5,4.9,1.5,versicolor
6.1,2.8,4.7,1.2,versicolor
6.4,2.9,4.3,1.3,versicolor
6.6,3,4.4,1.4,versicolor
6.8,2.8,4.8,1.4,versicolor
6.7,3,5,1.7,versicolor
6,2.9,4.5,1.5,versicolor
5.7,2.6,3.5,1,versicolor
5.5,2.4,3.8,1.1,versicolor
5.5,2.4,3.7,1,versicolor
5.8,2.7,3.9,1.2,versicolor
6,2.7,5.1,1.6,versicolor
5.4,3,4.5,1.5,versicolor
6,3.4,4.5,1.6,versicolor
6.7,3.1,4.7,1.5,versicolor
6.3,2.3,4.4,1.3,versicolor
5.6,3,4.1,1.3,versicolor
5.5,2.5,4,1.3,versicolor
5.5,2.6,4.4,1.2,versicolor
6.1,3,4.6,1.4,versicolor
5.8,2.6,4,1.2,versicolor
5,2.3,3.3,1,versicolor
5.6,2.7,4.2,1.3,versicolor
5.7,3,4.2,1.2,versicolor
5.7,2.9,4.2,1.3,versicolor
6.2,2.9,4.3,1.3,versicolor
5.1,2.5,3,1.1,versicolor
5.7,2.8,4.1,1.3,versicolor
6.3,3.3,6,2.5,virginica
5.8,2.7,5.1,1.9,virginica
7.1,3,5.9,2.1,virginica
6.3,2.9,5.6,1.8,virginica
6.5,3,5.8,2.2,virginica
7.6,3,6.6,2.1,virginica
4.9,2.5,4.5,1.7,virginica
7.3,2.9,6.3,1.8,virginica
6.7,2.5,5.8,1.8,virginica
7.2,3.6,6.1,2.5,virginica
6.5,3.2,5.1,2,virginica
6.4,2.7,5.3,1.9,virginica
6.8,3,5.5,2.1,virginica
5.7,2.5,5,2,virginica
5.8,2.8,5.1,2.4,virginica
6.4,3.2,5.3,2.3,virginica
6.5,3,5.5,1.8,virginica
7.7,3.8,6.7,2.2,virginica
7.7,2.6,6.9,2.3,virginica
6,2.2,5,1.5,virginica
6.9,3.2,5.7,2.3,virginica
5.6,2.8,4.9,2,virginica
7.7,2.8,6.7,2,virginica
6.3,2.7,4.9,1.8,virginica
6.7,3.3,5.7,2.1,virginica
7.2,3.2,6,1.8,virginica
6.2,2.8,4.8,1.8,virginica
6.1,3,4.9,1.8,virginica
6.4,2.8,5.6,2.1,virginica
7.2,3,5.8,1.6,virginica
7.4,2.8,6.1,1.9,virginica
7.9,3.8,6.4,2,virginica
6.4,2.8,5.6,2.2,virginica
6.3,2.8,5.1,1.5,virginica
6.1,2.6,5.6,1.4,virginica
7.7,3,6.1,2.3,virginica
6.3,3.4,5.6,2.4,virginica
6.4,3.1,5.5,1.8,virginica
6,3,4.8,1.8,virginica
6.9,3.1,5.4,2.1,virginica
6.7,3.1,5.6,2.4,virginica
6.9,3.1,5.1,2.3,virginica
5.8,2.7,5.1,1.9,virginica
6.8,3.2,5.9,2.3,virginica
6.7,3.3,5.7,2.5,virginica
6.7,3,5.2,2.3,virginica
6.3,2.5,5,1.9,virginica
6.5,3,5.2,2,virginica
6.2,3.4,5.4,2.3,virginica
5.9,3,5.1,1.8,virginica
use Phpml\Classification\KNearestNeighbors;
use Phpml\CrossValidation\RandomSplit;
use Phpml\Dataset\Demo\IrisDataset;
use Phpml\Metric\Accuracy;
$dataset = new IrisDataset();
$split = new RandomSplit($dataset);
$classifier = new KNearestNeighbors();
$classifier->train(
$split->getTrainSamples(),
$split->getTrainLabels()
);
$predicted = $classifier->predict($split->getTestSamples());
echo sprintf("Accuracy: %s",
Accuracy::score($split->getTestLabels(), $predicted)
);
51.403007;7.208546;good
52.2688736;10.5267696;good
52.235083;5.181552;good
47.5292;9.9267;good
47.9704873;17.7852936;moderate
51.4625;13.526666666667;moderate
48.7344444;19.1128073;good
46.815277777778;9.8558333333333;good
51.1506269;14.968707;good
47.041668;15.433056;good
50.303207830366;6.0017362891249;good
47.178333333333;14.676666666667;good
47.102253726073;9.3375502158063;good
47.5818083;12.1724111;good
50.97;9.8;moderate
47.146155;5.551039;good
51.64265556;15.12780833;good
54.353333333333;18.635277777778;good
50.5425641;12.7792228;good
52.234504;6.919494;moderate
50.467528;13.412696;good
51.233652208391;5.1639788468472;good
52.14325;19.233225;good
45.14254358;10.04384767;unhealthy for sensitive
49.228472;17.675083;unhealthy for sensitive
50.80425833;8.76932778;moderate
48.396866667006;9.9789750003815;moderate
53.4708393;7.4848308;good
47.871158;17.273464;good
48.33472;16.729445;good
47.409443;15.253333;good
$minLat = 41.34343606848294;
$maxLat = 57.844750992891;
$minLng = -16.040039062500004;
$maxLng = 29.311523437500004;
$step = 0.1;
$k = 3;
$dataset = new CsvDataset(__DIR__.'/../data/air.csv', 2, false, ';');
$estimator = new KNearestNeighbors($k);
$estimator->train($dataset->getSamples(), $dataset->getTargets());
$lines = [];
for ($lat=$minLat; $lat<$maxLat; $lat+=$step) {
for ($lng=$minLng; $lng<$maxLng; $lng+=$step) {
$lines[] = sprintf('%s;%s;%s', $lat, $lng, $estimator->predict([[$lat, $lng]])[0]);
}
}
file_put_contents(__DIR__.'/../data/airVis.csv', implode(PHP_EOL, $lines));
Miles Price
9300 7100
10565 15500
15000 4400
15000 4400
17764 5900
57000 4600
65940 8800
73676 2000
77006 2750
93739 2550
146088 960
153260 1025
use Phpml\Regression\LeastSquares;
$samples = [[9300], [10565], [15000], [15000], [17764], [57000], [65940], [73676], [77006], [93739], [146088], [153260]];
$targets = [7100, 15500, 4400, 4400, 5900, 4600, 8800, 2000, 2750, 2550, 960, 1025];
$regression = new LeastSquares();
$regression->train($samples, $targets);
$regression->getCoefficients();
$regression->getIntercept();
$price = $regression->predict([35000]);
41.793935909;-87.625680278
41.907274031;-87.722791892
41.851296671;-87.706458801
41.775963639;-87.615517372
41.794879;-87.63179049
41.799461412;-87.596206318
41.989599401;-87.660256868
42.019398729;-87.67543958
42.004487311;-87.679846425
42.009087258;-87.690171862
41.799518433;-87.590997844
41.875039579;-87.743690267
41.875198392;-87.717479393
41.78640901;-87.649813179
41.766229647;-87.577855722
41.900062396;-87.620884259
41.744708666;-87.616371298
41.7737319;-87.651916442
41.692289426;-87.647852131
41.874236291;-87.674657583
41.761450225;-87.623211368
41.831030756;-87.624424247
41.974853031;-87.713545123
41.974605662;-87.660819291
41.815419529;-87.702711186
41.750341521;-87.657371388
41.854659562;-87.716303651
41.834650408;-87.62843175
41.793435216;-87.70876482
41.894904052;-87.626344479
41.894993069;-87.746918939
41.90984267;-87.729545576
41.967477901;-87.739224006
41.87522978;-87.728549617
41.765946803;-87.595563723
41.908222431;-87.679234761
41.882757453;-87.709603286
41.876121224;-87.641003973
41.809372853;-87.704024967
41.977043475;-87.76899404
41.943664148;-87.646353396
41.759350571;-87.623168543
41.693840666;-87.613406835
41.964351639;-87.661000678
use Phpml\Clustering\KMeans;
$samples = [
[1, 1], [8, 7], [1, 2],
[7, 8], [2, 1], [8, 9]
];
$kmeans = new KMeans(2);
$clusters = $kmeans->cluster($samples);
$clusters = [
[[1, 1], [1, 2], [2, 1]],
[[8, 7], [7, 8], [8, 9]]
];
use Phpml\FeatureExtraction\TokenCountVectorizer;
use Phpml\Tokenization\WhitespaceTokenizer;
$samples = [
'Lorem ipsum dolor sit amet dolor',
'Mauris placerat ipsum dolor',
'Mauris diam eros fringilla diam',
];
$vectorizer = new TokenCountVectorizer(new WhitespaceTokenizer());
$vectorizer->fit($samples);
$vectorizer->getVocabulary()
$vectorizer->transform($samples);
$tokensCounts = [
[0 => 1, 1 => 1, 2 => 2, 3 => 1, 4 => 1, 5 => 0, 6 => 0, 7 => 0, 8 => 0, 9 => 0],
[0 => 0, 1 => 1, 2 => 1, 3 => 0, 4 => 0, 5 => 1, 6 => 1, 7 => 0, 8 => 0, 9 => 0],
[0 => 0, 1 => 0, 2 => 0, 3 => 0, 4 => 0, 5 => 1, 6 => 0, 7 => 2, 8 => 1, 9 => 1],
];
use Phpml\CrossValidation\RandomSplit;
use Phpml\CrossValidation\StratifiedRandomSplit;
use Phpml\Dataset\ArrayDataset;
$dataset = new ArrayDataset(
$samples = [[1], [2], [3], [4]],
$labels = ['a', 'a', 'b', 'b']
);
$randomSplit = new RandomSplit($dataset, 0.5);
$dataset = new ArrayDataset(
$samples = [[1], [2], [3], [4], [5], [6], [7], [8]],
$labels = ['a', 'a', 'a', 'a', 'b', 'b', 'b', 'b']
);
$split = new StratifiedRandomSplit($dataset, 0.5);
https://github.com/php-ai/php-ml
source: http://scikit-learn.org/stable/tutorial/machine_learning_map/index.html
https://twitter.com/JustinMatejka/status/859075295059562498
PHP 7.0
206,128 instances classified in 30 seconds
(6,871 per second)
https://github.com/syntheticminds/php7-ml-comparison
Python 2.7
106,879 instances classified in 30 seconds
(3,562 per second)
NodeJS v5.11.1
245,227 instances classified in 30 seconds
(8,174 per second)
Java 8
16,809,048 instances classified in 30 seconds
(560,301 per second)
PHP 7.1
302,931 instances classified in 30 seconds
(10,098 per second)
PHP 7.2
365,568 instances classified in 30 seconds
(12,186 per second)
PHP 7.3
408,667 instances classified in 30 seconds
(13,622 per second)
kaggle.com
@ ArkadiuszKondas
https://arkadiuszkondas.com
https://php-ml.org/
https://slides.com/arkadiuszkondas/machine-learning-in-php-2019/
https://joind.in/talk/98e38