ML 2019 Fall Final Prj
~Use real images to predict drawing~
Arvin Liu
Real Image -> Drawing
(32 x 32 x 3)
(28 x 28 x 1)
Domain Adaptaion
有Label
沒有Label
Feature Extractor
Classifier
Source
Target
Source: blue
Target: Red
Feature Distribution
np.load("trainX.npy")
# Get (5000, 32, 32, 3)
np.load("test.npy")
# Get (100000, 28, 28, 1)
np.load("trainY.npy")
# Get (5000,)
(label = 0~9)
(Balanced)
(Balanced)
id,label
0,0
1,0
2,0
3,0
4,0
5,0
6,0
就是同你的Hw3
Only torchvision's pre-trained models are allowed.
如果狀況太差的話會調降,只會降: )
Edge
Detection
直接讓Train很像Test也是種"Adaptation"?
*直接用cv2套件就可以了 (cv2.Canny)
這邊就有一個提示了XD
下圖是上圖的邊緣偵測結果