$$ \boxed{ \log q(z|x) \le \mathbb{E}_{q(\psi_0|x,z)} \mathbb{E}_{\tau(\psi_{1:K}|x)} \log \left[ \frac{1}{K+1} \sum_{k=0}^K \frac{q(z, \psi_k \mid x)}{\tau(\psi_k|x,z)} \right] }$$
- Generalizes both SIVI and HVM
- Upper-bound analogue of the IWAE lower bound: $$ \log q(z|x) \ge\mathbb{E}_{\tau(\psi_{1:K}|x)} \log \left[ \frac{1}{K} \sum_{k=1}^K \frac{q(z, \psi_k \mid x)}{\tau(\psi_k|x,z)} \right] $$
- Has similar theoretical guarantees:
- Always an upper bound
- Monotonically improves as \(K\) increases
- Exact in the limit of infinite \(K\)