ayush0016
What and
A measure of what can not be understood from data.
Occlusions, lack of visual features, over/under exposed areas (glare & shading).
what and why ?
Measure of what model doesn’t know due to lack of training data.
what and
A field at the intersection between Deep learning and Bayesian probability theory
Variational inference is a Bayesian approach to estimate posteriors using an arbitrary distribution
Bayesian interpretation of the regularization technique known as “dropout”
What and
Regularization technique to prevent "overfitting"
Training
Testing Phase : Use all activations, but reduce them by a factor p (to account for the missing activations during training).
MC Dropout Key Idea
Dropout could be used to perform variational inference where the variational distribution is from a Bernoulli distribution (where the states are “on” and “off”).
Bernoulli distribution
class LeNet_dropout(nn.Module):
def __init__(self):
super(LeNet_dropout, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(F.dropout(self.conv1(x), training=True), 2))
x = F.relu(F.max_pool2d(F.dropout(self.conv2(x), training=True), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=True)
x = self.fc2(x)
return x
def train(model, opt, epoch):
model.train()
lr = args.lr * (0.1 ** (epoch // 10))
opt.param_groups[0]['lr'] = lr
for batch_idx, (data, target) in enumerate(train_loader):
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data), Variable(target)
opt.zero_grad()
output = model(data)
loss = F.nll_loss(F.log_softmax(output), target)
loss.backward()
opt.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)] lr: {}\tLoss: {:.6f}'
.format(epoch, batch_idx * len(data),
len(train_loader.dataset),
100. * batch_idx / len(train_loader),
lr, loss.data[0]))
def mcdropout_test(model):
model.train()
test_loss = 0
correct = 0
T = 100
for data, target in test_loader:
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data, volatile=True), Variable(target)
output_list = []
for i in xrange(T):
output_list.append(torch.unsqueeze(model(data), 0))
output_mean = torch.cat(output_list, 0).mean(0)
test_loss += F.nll_loss(F.log_softmax(output_mean), target, size_average=False).data[0] # sum up batch loss
pred = output_mean.data.max(1, keepdim=True)[1] # get the index of the max log-probability
correct += pred.eq(target.data.view_as(pred)).cpu().sum()
test_loss /= len(test_loader.dataset)
print('\nMC Dropout Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
https://github.com/ayush1997/bdl
https://slides.com/ayush1997/ml-3/
ayush0016
ayushsingh97
ayush1997
ayush1997
ayushkumar97