Hui Hu Ph.D.
Department of Epidemiology
College of Public Health and Health Professions & College of Medicine
April 1, 2020
Data
Prior Belief
Decision
Frequentist
Bayesian
Frequentist |
---|
Data are repeatable random sample: there is a frequency |
Underlying parameters remain constant during this repeatable process |
Parameters are fixed |
Bayesian |
---|
Data are observed from the realized sample |
Parameters are unknown and described probabilistically |
Data are fixed |
Posterior:
The probability of parameter given the data is collected
Likelihood:
The probability of collecting this data given the parameter
Prior:
The probability of the parameter before collecting data
Marginal Likelihood:
The probability of collecting this data under all possible parameters
Posterior:
The probability of parameter given the data is collected
Likelihood:
The probability of collecting this data given the parameter
Prior:
The probability of the parameter before collecting data
Marginal Likelihood:
The probability of collecting this data under all possible parameters
Posterior:
The probability of parameter given the data is collected
Likelihood:
The probability of collecting this data given the parameter
Prior:
The probability of the parameter before collecting data
Marginal Likelihood:
The probability of collecting this data under all possible parameters
Posterior:
The probability of parameter given the data is collected
Likelihood:
The probability of collecting this data given the parameter
Prior:
The probability of the parameter before collecting data
Marginal Likelihood:
The probability of collecting this data under all possible parameters
The posterior is proportional to the likelihood times the prior
#Q9. Use the over() function to overlay the centroids and state boundaries, and merge "GEOID" and "plowedu" from "us" to "USelect2004". (5 pts)
USelect2004$GEOID<-over(centroidelect,us)$GEOID
USelect2004$plowedu<-over(centroidelect,us)$plowedu
head(USelect2004@data)