Análisis de la movilidad escolar en áreas urbanas
Análisis de ia movilidad escolar en áreas urbanas
Licencia CC BY-SA 4.0
INTRODUCCIÓN - Objetivos - Área Estudio - Materiales - Método - Resultados
Estudio dinámico de la movilidad escolar mediante tecnologías web de geolocalización (SPIP2015-01867).
Análisis de indicadores big geo-data sobre viarios urbanos para el diseño dinámico de caminos escolares seguros. (SPIP2017-02340)
Análisis de indicadores Big Geo-Data sobre viarios urbanos para el diseño dinámico de caminos escolares seguros
Análisis de indicadores Big Geo-Data sobre viarios urbanos para el diseño dinámico de caminos escolares seguros
Introducción - OBJETIVOS - Área Estudio - Materiales - Método - Resultados
(Díaz Grandío, 2012)
Introducción - OBJETIVOS - Área Estudio - Materiales - Método - Resultados
(Díaz Grandío, 2012)
(Varela García, 2013)
Introducción - Objetivos - ÁREA ESTUDIO - Materiales - Método - Resultados
Introducción - Objetivos - Área Estudio - MATERIALES - Método - Resultados
Introducción - Objetivos - Área Estudio - MATERIALES - Método - Resultados
Introducción - Objetivos - Área Estudio - Materiales - MÉTODO - Resultados
Pendientes
Bordillos
Otros...
Pasos peatones
Obstáculos para sillas ruedas
Obstáculos para peatones
MMCoruna_023_S1.laz + MMCoruna_023_S2.laz
Merge sensor 1 and sensor 2 data
Classify ground and not ground
Filter ground:
* Normal Z filter
* K-Distance filter
* PMF filter
Create MDE
Create Intensity ground raster
Fill empty ground cells by interpolating with neighboring values. txt
Create wheelchair obstacles raster
Wheelchair_obstacles.tif
Introducción - Objetivos - Área Estudio - Materiales - MÉTODO - Resultados
Input: MMCoruna_023_S1.laz
Output: out_1_ground_and_hag.las
Filtro PMF. Segmenta ground / not ground (Zhang, 2003)
Escribir fichero
Introducción - Objetivos - Área Estudio - Materiales - MÉTODO - RESULTADOS
Cargar datos *.laz
Seleccionar por NumberOfReturns [1:1]
Filtro ELM (Chen, 2012)
Output: out_3_a_normals_filter.las
Seleccionar Classification[2:2]
Calcular NormalZ (knn=30)
Seleccionar normalZ [0:0.6] Classification ->1
Seleccionar normalZ ! [0:0.6] Classification ->2
Merge suelo / no suelo
Escribir fichero
Input: out_2_outlier_filter.las
Introducción - Objetivos - Área Estudio - Materiales - MÉTODO - RESULTADOS
Normal Z Filter
Output: out_3_b_kdistance_filter.las
Input: out_3_a_normals_filter.las
Seleccionar Classification [2:2]
KDistance (k=300)
Seleccionar puntos KD >1 -> classification = 1
Seleccionar puntos KD <1 -> classification = 2
Merge puntos suelo / no suelo
Introducción - Objetivos - Área Estudio - Materiales - MÉTODO - RESULTADOS
Output: out_3_c_PMF_filter.las
Input: out_3_b_KDistance_filter.las
Seleccionar Classification [2:2]
PMF. Segmentar suelo / no suelo
Introducción - Objetivos - Área Estudio - Materiales - MÉTODO - RESULTADOS
Introducción - Objetivos - Área Estudio - Materiales - MÉTODO - RESULTADOS
gdal_fillnodata.py -md 12 -b 1 -of GTiff <out_5_Z_heights.tif> <Z_heights_filled.tif>
1- Rellenar celdas del raster mediante gdal.fillnodata
2- Crear una máscara adaptada al área de estudio mediante gdal.translate
gdal_translate -projwin 547284.875 4801507.66 547504.835 4801352.5 -ot Float32 -of GTiff <building_mask.tif> <clipped_extent.tif>
3- Multiplicar Z_heights_filled.tif por clipped_extent.tif para generar un ráster adaptado a la máscara correrspondiente
gdal_calc --calc "A*B" --format GTiff --type Float32 --outfile out_7_Z_height_masked_ground.tif> -A <Z_heights_filled.tif> --A_band 1 -B <clipped_extent.tif> --B_band 1
Introducción - Objetivos - Área Estudio - Materiales - MÉTODO - RESULTADOS
Calcular HAG
Seleccionar HAG [0.05 : 2.20] -> Clasification = 1
Escribir fichero en GTiff con malla 18cm
Cortar tiff con máscara edificaciones
gdal_calc --calc "A*B" --format GTiff --type Float32 --outfile <out_10_wheelchair_obstacles_masked.tif> -A <out_8_wheelchair_obstacles_raster.tif> --A_band 1
-B <clipped_extent.tif> --B_band 1
Introducción - Objetivos - Área Estudio - Materiales - MÉTODO - RESULTADOS
(Díaz Grandío, 2012)
(Varela García, 2013)
Geomove II. Análisis de indicadores Big Geo-Data sobre viarios urbanos para el diseño dinámico de caminos escolares seguros
Geomove. Análisis de la movilidad escolar en áreas urbanas by David Fernández Arango, Alberto Varela García and Luigi Pirelli is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.