A deep dive into scalac

Chris Birchall

Scala eXchange

10th December 2015

  • The journey from Foo.scala to Foo.class

  • The scalac codebase

  • Extending the compiler with plugins

  • Hacking on the compiler itself

Agenda

me me me

  • Anthropological interest

  • Debugging slow compilation

  • Writing macros

  • Contributing to Scala

Why is this useful?

The journey

from Foo.scala to Foo.class

Terminology

The compiler deals with 3 kinds of stuff

  • Trees

  • Types

  • Symbols

Tree

Abstract Syntax Tree (AST)

scala> import scala.reflect.runtime.universe._
import scala.reflect.runtime.universe._

scala> val tree = q"a + b"
tree: reflect.runtime.universe.Tree = a.$plus(b)

scala> showRaw(tree)
res0: String = 
  Apply(
    Select(
      Ident(TermName("a")), 
      TermName("$plus")
    ), 
    List(Ident(TermName("b")))
  )

Type

The, erm, type of a thing?

Symbol

A binding between a "thing" (e.g. a method, a class or a type) and the name for that thing

Compilation (1/2)

Compilation (2/2)

$ scalac -Xshow-phases
    phase name  id  description
    ----------  --  -----------
        parser   1  parse source into ASTs, perform simple desugaring
         namer   2  resolve names, attach symbols to named trees
packageobjects   3  load package objects
         typer   4  the meat and potatoes: type the trees
        patmat   5  translate match expressions
superaccessors   6  add super accessors in traits and nested classes
    extmethods   7  add extension methods for inline classes
       pickler   8  serialize symbol tables
     refchecks   9  reference/override checking, translate nested objects
       uncurry  10  uncurry, translate function values to anonymous classes
     tailcalls  11  replace tail calls by jumps
    specialize  12  @specialized-driven class and method specialization
 explicitouter  13  this refs to outer pointers
       erasure  14  erase types, add interfaces for traits
   posterasure  15  clean up erased inline classes
      lazyvals  16  allocate bitmaps, translate lazy vals into lazified defs
    lambdalift  17  move nested functions to top level
  constructors  18  move field definitions into constructors
       flatten  19  eliminate inner classes
         mixin  20  mixin composition
       cleanup  21  platform-specific cleanups, generate reflective calls
    delambdafy  22  remove lambdas
         icode  23  generate portable intermediate code
           jvm  24  generate JVM bytecode
      terminal  25  the last phase during a compilation run

Why is my compile so slow?

$ scalac -verbose Foo.scala 2>&1 | grep "\[\w* in \d*ms\]"
[parser in 19ms]
[namer in 70ms]
[packageobjects in 0ms]
[typer in 570ms]
[patmat in 204ms]
[superaccessors in 12ms]
[extmethods in 3ms]
[pickler in 14ms]
[refchecks in 54ms]
...
[cleanup in 4ms]
[delambdafy in 0ms]
[jvm in 167ms]
[total in 2391ms]

What is phase X doing?

Example: patmat

object PatternMatch {
  def isGreeting(word: String) = word match {
    case "hello" => true
    case _ => false
  }
}

Before patmat phase

$ scalac -Xprint:typer PatternMatch.scala
[[syntax trees at end of                     typer]]
package <empty> {
  object PatternMatch extends scala.AnyRef {
    def <init>(): PatternMatch.type = {
      PatternMatch.super.<init>();
      ()
    };
    def isGreeting(word: String): Boolean = word match {
      case "hello" => true
      case _ => false
    }
  }
}

After patmat phase

$ scalac -Xprint:patmat PatternMatch.scala
// ...
    def isGreeting(word: String): Boolean = {
      case <synthetic> val x1: String = word;
      case5(){
        if ("hello".==(x1))
          matchEnd4(true)
        else
          case6()
      };
      case6(){
        matchEnd4(false)
      };
      matchEnd4(x: Boolean){
        x
      }
    }

The code

History

  • 2004 - Scala 1.0, compiler written in Java

  • 2006 - Scala 2.0, nsc

  • 2011-2012 - .Net backend

  • 2013 - Scala.js

  • (2.12) - new backend and optimizer

Size


--------------------------------------------------------------------------------
Language                      files          blank        comment           code
--------------------------------------------------------------------------------
Scala                           321          12304          21416          63852
Bourne Again Shell                1             26             41            150
XML                               2              0              0             26
--------------------------------------------------------------------------------
SUM:                            324          12330          21457          64028
--------------------------------------------------------------------------------

(Scala 2.11.7)

mi casa es su casa

class Global {

  // ...

  lazy val analyzer = new {
    val global: Global.this.type = Global.this
  } with Analyzer

}

trait Analyzer extends ... {
  val global : Global
  import global._

  // ...
}

Walkthrough

simplified version of Global.Run.compile(files: List[String])

  1. create list of phases
  2. for each phase
    1. for each file
      1. run phase
    2. print debug stuff
    3. sanity check trees
  3. print any errors

Phase

abstract class GlobalPhase(prev: Phase) extends Phase(prev) {

  // ...

  def apply(unit: CompilationUnit): Unit

}

Transformer

class InvertingTransformer extends Transformer {

  def transform(tree: Tree): Tree = {
    val newTree = super.transform(tree)
    newTree match {
      case Literal(Constant(true)) => Literal(Constant(false))
      case Literal(Constant(false)) => Literal(Constant(true))
      case _ => newTree
    }
  }

}

Plugins

class MyPlugin(val global: Global) extends Plugin {

  val components = List[PluginComponent](Component)

  private object Component extends PluginComponent {
    val runsAfter = List("typer")
    def newPhase(prev: Phase) = new MyPhase(prev)

    class MyPhase(prev: Phase) extends StdPhase(prev) {

      def apply(unit: CompilationUnit): Unit = {
        // TODO: MAGIC GOES HERE
      }

    }
  }
}

BASIC!

Example

Let's hack!

$ git clone git@github.com:scala/scala.git && cd scala
# ... hack hack hack ...
$ echo "locker.skip=1" > build.properties
$ echo "docs.skip=1" >> build.properties
$ ant publish-core-local -Dmaven.version.suffix="-chris"
# ... go and make a cup of tea ...
# ...
$ cd ~/tmp
$ echo 'scalaVersion := "2.11.7-chris"' > build.sbt
$ echo 'resolvers += Resolver.mavenLocal' >> build.sbt
$ sbt console

Let's hack!

My (trolling) contribution ...

Let's hack!

Why stop at adding a json AST?

 

Everybody loves XML literals,

so why don't we have JSON literals?

scala> val foo = json [ { "a": "b", "c": 123, "d": [ true ]}, 1.23e+5 ]

1. Add json AST to stdlib

// src/library/scala/json/AST.scala
package scala.json

object AST {

  sealed trait JValue

  case object JNull extends JValue

  case class JString(s: String) extends JValue

  sealed trait JNumber
  case class JDecimal(num: BigDecimal) extends JValue with JNumber
  case class JInt(num: BigInt) extends JValue with JNumber

  case class JBool(value: Boolean) extends JValue
  
  // ...

}

2. Add keyword, token

// src/reflect/scala/reflect/internal/StdNames.scala

    // ...
    final val VIEWBOUNDkw: TermName = kw("<%")
    final val SUPERTYPEkw: TermName = kw(">:")
    final val HASHkw: TermName      = kw("#")
    final val ATkw: TermName        = kw("@")
    final val JSONkw: TermName      = kw("json")  // (* ̄0 ̄)/
// src/compiler/scala/tools/nsc/ast/parser/Tokens.scala

  // ...
  final val VIEWBOUND = 136
  final val NEWLINE = 137
  final val NEWLINES = 138
  final val XMLSTART = 139
  final val JSONSTART = 140  // ヾ(@⌒ー⌒@)ノ

3. Add JSON parser

class JsonParser(parser: SourceFileParser) {

  def jLiteral: Tree = {
    val jvalue: JValue = parse()
    TreeBuilder.toTree(jvalue)
  }

  // ...

  private def parse(): JValue = {
    parser.in.nextToken()
    parser.in.token match {
      case LBRACE =>
        stack.push(JObject(Nil))
        parse()
      case RBRACE =>
        // ...
  }

}

4. Wire it together

// src/compiler/scala/tools/nsc/ast/parser/Parsers.scala

private[this] val jsonp = new JsonParser(this)

def jsonLiteral() : Tree = jsonp.jLiteral

def expr0(location: Location): Tree = in.token match {
  case IF => // ...
  case TRY => // ...
  case WHILE => // ...
  // ...
  case JSONSTART => jsonLiteral()
  // ...
}

DEMO

Further reading

Final remarks

Questions?

Bonus content

(time permitting)

Another example: tail-call optimization

import scala.annotation.tailrec

object Fib {
  def fib(n: Int) = {
    @tailrec
    def fibRec(n: Int, a:Int, b:Int): Int = n match {
      case 0 => a
      case _ => fibRec(n-1, b, a+b)
    }
    fibRec(n, 0, 1)
  }
}

Before tailcalls

$ scalac -Xprint:uncurry Fib.scala
// ...
def fib(n: Int): Int = {
  @scala.annotation.tailrec def fibRec(n: Int, a: Int, b: Int): Int = {
    case <synthetic> val x1: Int = n;
    x1 match {
      case 0 => a
      case _ => fibRec(n.-(1), b, a.+(b))
    }
  };
  fibRec(n, 0, 1)
}

After tailcalls

$ scalac -Xprint:tailcalls Fib.scala
// ...
def fib(n: Int): Int = {
  @scala.annotation.tailrec def fibRec(n: Int, a: Int, b: Int): Int = {
    <synthetic> val _$this: Fib.type = Fib.this;
    _fibRec(_$this: Fib.type, n: Int, a: Int, b: Int){
      {
        case <synthetic> val x1: Int = n;
        x1 match {
          case 0 => a
          case _ => _fibRec(Fib.this, n.-(1).asInstanceOf[Int](), b.asInstanceOf[Int](), a.+(b).asInstanceOf[Int]())
        }
      }.asInstanceOf[Int]()
    }
  };
  fibRec(n, 0, 1)
}

Let's look at the tree

[[syntax trees at end of tailcalls]]// Scala source: Fib.scala
PackageDef(
  "<empty>" // final package <empty>, tree.tpe=<empty>.type
  ClassDef( // class Fib extends Object
    <module>
    "Fib"
    []
    Template( // val <local Fib>: <notype> in object Fib, tree.tpe=Fib.type
      "java.lang.Object" // parents
      ValDef(
        private
        "_"
        <tpt>
        <empty>
      )
      // 2 statements
      DefDef( // def <init>(): Fib.type in object Fib
        <method>
        "<init>"
        []
        List(Nil)
        <tpt> // tree.tpe=Fib.type
        Block( // tree.tpe=Unit
          Apply( // def <init>(): Object in class Object, tree.tpe=Object
            Fib.super."<init>" // def <init>(): Object in class Object, tree.tpe=()Object
            Nil
          )
          ()
        )
      )
      DefDef( // def fib(n: Int): Int in object Fib
        <method>
        "fib"
        []
        // 1 parameter list
        ValDef( // n: Int
          <param> <triedcooking>
          "n"
          <tpt> // tree.tpe=Int
          <empty>
        )
        <tpt> // tree.tpe=Int
        Block( // tree.tpe=Int
          DefDef( // def fibRec(n: Int,a: Int,b: Int): Int
            <method> <triedcooking> @{ scala.annotation.tailrec }
            "fibRec"
            []
            // 1 parameter list
            ValDef( // n: Int
              <param> <triedcooking>
              "n"
              <tpt> // tree.tpe=Int
              <empty>
            )
            ValDef( // a: Int
              <param> <triedcooking>
              "a"
              <tpt> // tree.tpe=Int
              <empty>
            )
            ValDef( // b: Int
              <param> <triedcooking>
              "b"
              <tpt> // tree.tpe=Int
              <empty>
            )
            <tpt> // tree.tpe=Int
            Block( // tree.tpe=Int
              ValDef( // val _$this: Fib.type
                <synthetic>
                "_$this"
                <tpt> // tree.tpe=Fib.type
                This("Fib")class Fib extends Object, tree.tpe=Fib.type
              )
              LabelDef( // def _fibRec(x$1: Fib.type,n: Int,a: Int,b: Int): Int, tree.tpe=Int
                // 4 paramss
                "_$this" // val _$this: Fib.type, tree.tpe=Fib.type
                "n" // n: Int, tree.tpe=Int
                "a" // a: Int, tree.tpe=Int
                "b" // b: Int, tree.tpe=Int
                Apply( // final def asInstanceOf[T0](): T0 in class Any, tree.tpe=Int
                  TypeApply( // final def asInstanceOf[T0](): T0 in class Any, tree.tpe=()Int
                    {
  case <synthetic> val x1: Int = n;
  x1 match {
    case 0 => a
    case _ => _fibRec(Fib.this, n.-(1).asInstanceOf[Int](), b.asInstanceOf[Int](), a.+(b).asInstanceOf[Int]())
  }
}."asInstanceOf" // final def asInstanceOf[T0](): T0 in class Any, tree.tpe=[T0]()T0
                    <tpt> // tree.tpe=Int
                  )
                  Nil
                )
              )
            )
          )
          Apply( // def fibRec(n: Int,a: Int,b: Int): Int, tree.tpe=Int
            "fibRec" // def fibRec(n: Int,a: Int,b: Int): Int, tree.tpe=(n: Int, a: Int, b: Int)Int
            // 3 arguments
            "n" // n: Int, tree.tpe=Int
            0
            1
          )
        )
      )
    )
  )
)
$ scalac -Xprint:tailcalls -Yshow-trees Fib.scala
LabelDef( // def _fibRec(x$1: Fib.type,n: Int,a: Int,b: Int): Int, tree.tpe=Int
    // 4 paramss
    "_$this" // val _$this: Fib.type, tree.tpe=Fib.type
    "n" // n: Int, tree.tpe=Int
    "a" // a: Int, tree.tpe=Int
    "b" // b: Int, tree.tpe=Int

...and the bytecode

$ javap -private -c Fib$.class

  // ...

  private final int fibRec$1(int, int, int);
    Code:
       0: iload_1
       1: istore        5
       3: iload         5
       5: tableswitch   { // 0 to 0
                     0: 37
               default: 24
          }
      24: iload_1
      25: iconst_1
      26: isub
      27: iload_3
      28: iload_2
      29: iload_3
      30: iadd
      31: istore_3
      32: istore_2
      33: istore_1
      34: goto          0
      37: iload_2
      38: ireturn

In general

$ scalac -Xprint:<previous-phase> \
    [-Xprint-types] \
    [-Yshow-trees] \
    [-Yshow-syms] \
    [-Xshow-class Foo] \
    Foo.scala

$ scalac -Xprint:<phase-you-care-about> \
    [-Xprint-types] \
    [-Yshow-trees] \
    [-Yshow-syms] \
    [-Xshow-class Foo] \
    Foo.scala
Made with Slides.com