Direct Sum Decomposition compatible with the equation \( p+q=r \) in \(U \otimes V \)

These slides are a record keeping tool and will not be used at for any actual presentations, hence the tiny font size and color choices at times

Let \( p \in U \otimes V\)

Fact: There exists subspaces \(A \leq U, X \leq V\) of minimal dimension such that \( p \in A \otimes X\) and \(\text{dim}(A) = \text{dim}(X) \)

Throughout \( U \) and \( V \) will be finite dimensional vector spaces 

Proof:

Let \(\{e_1,\ldots, e_m\}\) a basis of \( U \), \(\{f_1,\ldots, f_n\}\) a basis of \( V \)
Write in this basis \( p = \sum_{i,j} P_{ij} e_i \otimes f_j \)
Rank decompose coefficient matrix \(P\) as \( P = CF = \sum_{i=1}^{r}C_i F_i^T\)

Let \(a_k = \sum_{i=1}^{m}C_{ik}e_i \) and \(b_k = \sum_{j=1}^{n}F_{kj}f_j \)
Then \(\sum_{k=1}^{r} a_k \otimes b_k = \sum_{k=1}^{r}(\sum_{i=1}^{m}C_{ik}e_i \otimes \sum_{j=1}^{n}F_{kj}f_j) = \sum_{ij}P_{ij}e_i \otimes f_j = p\) and minimality by rank factorization of matrices.

 

The spaces \(A\) and \(X\) can be taken as the span of the \( \{a_k\} \) and \( \{b_k\} \) respectively.

\text{Example: } P = \begin{bmatrix} 17 & 22 & 27\\ 22 & 29 & 36 \\ 27 & 36 & 45 \end{bmatrix} P = CF \text{ for } C = \begin{bmatrix} 1 & 4\\ 2 & 5\\ 3 & 6 \end{bmatrix} F = \begin{bmatrix} 1 & 2 & 3\\ 4 & 5 & 6 \end{bmatrix}

\( p = \sum_{ij} P_{ij} e_i \otimes f_j \), \(a_1 = 1 e_1 + 2 e_2 + 3 e_3 \), \( b_1 = 1f_1 + 2 f_2 + 3 f_3 \), and so on

Consider the equation \( p+q=r \) in \( U \otimes V \), with \(U\) and \(V\) over \( \text{GF}(997) \)

p = \begin{bmatrix} 373 & 831 & 66 & 724 & 159 & 68 \\ 772 & 812 & 372 & 663 & 579 & 209 \\ 155 & 549 & 499 & 757 & 500 & 64 \\ 218 & 733 & 547 & 132 & 342 & 122 \\ 859 & 708 & 25 & 767 & 78 & 648 \\ 992 & 398 & 894 & 611 & 169 & 953 \end{bmatrix}
q = \begin{bmatrix} 176 & 355 & 631 & 671 & 759 & 955 \\ 252 & 645 & 740 & 978 & 500 & 638 \\ 308 & 485 & 963 & 867 & 212 & 39 \\ 146 & 830 & 155 & 854 & 264 & 14 \\ 30 & 375 & 193 & 887 & 38 & 692 \\ 107 & 281 & 218 & 640 & 676 & 450 \end{bmatrix}
r = \begin{bmatrix} 549 & 189 & 697 & 398 & 918 & 26 \\ 27 & 460 & 115 & 644 & 82 & 847 \\ 463 & 37 & 465 & 627 & 712 & 103 \\ 364 & 566 & 702 & 986 & 606 & 136 \\ 889 & 86 & 218 & 657 & 116 & 343 \\ 102 & 679 & 115 & 254 & 845 & 406 \end{bmatrix}

We know \( p+q = r \) means the equation holds entrywise,

but is there a basis which tells us something more?

Consider the equation \( p+q=r \) in \( U \otimes V \)

Goal (compatible decomposition): choose decompositions \(U = \bigoplus_{i=1}^{6} U_i\) and \(V = \bigoplus_{j=1}^{6}V_j\) such that

$$ p \in \textcolor{blue}{(U_1 \otimes V) \oplus (U_{>1} \otimes V_1)} \oplus \textcolor{green}{(U_2 \otimes V_2)} \oplus \textcolor{brown}{(U_3 \otimes V_3)}$$

$$q \in \textcolor{blue}{(U_1 \otimes V) \oplus (U_{>1} \otimes V_1)} \oplus \textcolor{green}{(U_2 \otimes V_2)} \oplus \textcolor{pink}{(U_4 \otimes V_4)}$$

$$r \in \textcolor{blue}{(U_1 \otimes V) \oplus (U_{>1} \otimes V_1)} \oplus \textcolor{brown}{(U_3 \otimes V_3)} \oplus \textcolor{pink}{(U_4 \otimes V_4)}$$

V1 V2 V3 V4 V5 V6
U1





U2

U3

U4
U5
U6
V1 V2 V3 V4 V5 V6
U1 * * * *
*
U2 * *
U3 *
U4 * *
U5
U6 *
V1 V2 V3 V4 V5 V6
U1 * * * * * *
U2 *
U3 * *
U4 * *
U5 *
U6

=

+

p

q

r

* In this picture, we assume \( U = A+B \) , \( V = X+Y \)

This can always be done by a preprocessing step

(Less ambitious) Compatible expansion goal that's still sufficient for derivation of product of tensors result

Find \(a_i, b_i, c_i, x_i,y_i,z_i\) such that

  • \( \forall i,\; a_i \in A, b_i \in B, c_i \in C, x_i \in X, y_i \in Y, z_i \in Z \)
  • \( \forall i,\; a_i \otimes x_i + b_i \otimes y_i = c_i \otimes z_i \)
  • \( \sum_i a_i \otimes x_i = p, \sum_i b_i \otimes y_i = q, \sum_k c_i \otimes z_i = r \)

 

(By decomposing the spaces, we separate out the individual equations into a few different types, categorized by what kind of equations can satisfy \( a \otimes x + b \otimes y = c \otimes z\))

 

Compatible decomposition implies compatible expansion as the \( (U5\oplus U6) \otimes (V5 \oplus V6) \) bottom right corner is empty so we can expand on the left/right basis strategically

\( p \in A \otimes X \)

Let subspaces \(A,B,C \leq U\), and subspaces \(X,Y,Z \leq V \) be of minimum dimension such that 

\( q \in B \otimes Y \)

\( r \in C \otimes Z \)

Recall \( p,q,r \in U \otimes V \) such that \( p+q=r \)

  • \( V_1 = X \cap Y \cap Z \)
  • \( V_2 = \text{complement of } V_1 \text{ in } X \cap Y \)
  • \( V_3 = \text{complement of } V_1 \text{ in } X \cap Z \)
  • \( V_4 = \text{complement of } V_1 \text{ in } Y \cap Z \)
  • \( V_5 = \text{complement of } X \cap Y + X \cap Z \text{ in } X \)
  • \( V_6 = \text{complement of } X \cap Y + Y \cap Z \text{ in } Y \)
  • \( U_1 = A \cap B \cap C \)
  • \( U_2 = \text{complement of } U_1 \text{ in } A \cap B \)
  • \( U_3 = \text{complement of } U_1 \text{ in } A \cap C \)
  • \( U_4 = \text{complement of } U_1 \text{ in } B \cap C \)
  • \( U_5 = \text{complement of } A \cap B + A \cap C \text{ in } A \)
  • \( U_6 = \text{complement of } A \cap B + B \cap C \text{ in } B \)

First, prove the sum \( \mathcal{U} := U_1 + U_2 + U_3 + U_4\) is direct

\( U_1 = A \cap B \cap C \)

\( U_2 = \text{complement of } U_1 \text{ in } A \cap B \)

\( U_3 = \text{complement of } U_1 \text{ in } A \cap C \)

\( U_4 = \text{complement of } U_1 \text{ in } B \cap C \)

\( U_1 \cap (U_2 + U_3 + U_4) = \{0\} \)

Second, prove \( (\mathcal{U} + U_5) \cap U_6  = \{0\} \)

Lastly, prove \( \mathcal{U} \cap U_5  = \{0\} \)

\( U_5 = \text{complement of } A \cap B + A \cap C \text{ in } A \)

\( U_6 = \text{complement of } A \cap B + B \cap C \text{ in } B \)

\( U_2 + U_3 + U_4 \) sum is direct

Let \(u_{ABC} = u_{AB} + u_{AC} + u_{BC} \) be in the intersection

\(u_{ABC}, u_{AC}, u_{BC} \in C \) implies \(u_{AB} \in C \)

But \(u_{AB} \in C\) and \(u_{AB} \in U_2\) implies \(u_{AB} \in U_1 \cap U_2\), hence \(u_{AB} = 0\)
Same argument gives \( u_{AC} \in B \) implies \( u_{AC} = 0 \)
Same argument gives \(u_{BC} = 0 \)

Prove \( U_2 \cap (U_3 + U_4) = \{0\} \) by same argument as above with \(u_{AB} = u_{AC} + u_{BC} \) concluding \(u_{AB} \in C \), which implies \(u_{AB} = 0\)

Let \( u_{ABC} + u_{AB} + u_{AC} + u_{BC} + u_5 = u_6 \) in the intersection

Since \( u_6, u_{ABC}, u_{AB}, u_{BC} \in B \), we have \( u_{AC} + u_5 \in B \)

But \( u_{AC} + u_5 \in A \), so \( u_{AC} + u_5 \in A \cap B \)
\( u_{AB} + (u_{AC} + u_5) \in A \cap B \) and \( u_{ABC} + u_{BC} \in B \cap C \)

\( u_6 = (u_{AB} + (u_{AC} + u_5)) + (u_{ABC} + u_{BC}) \) and \( U_6 \) is complement of \( A \cap B + B \cap C \), hence \( u_6 = 0 \).

Let \( u_{ABC} + u_{AB} + u_{AC} + u_{BC} = u_5 \) in the intersection.

Since \( u_5, u_{ABC}, u_{AB}, u_{AC} \in A \), we have \( u_{BC} \in A \)
But \( u_{BC} \in A \) and \( u_{BC} \in U_4 \) implies \( u_{BC} = 0 \)
\( (u_{ABC} + u_{AB}) + u_{AC} \in A \cap B + A \cap C \), and \( U_5 \) is complement of \( A \cap B + A \cap C \), hence \( u_5 = 0 \)

Claim: \(A = U_1 \oplus U_2 \oplus U_3 \oplus U_5 \)

Claim: \(B = U_1 \oplus U_2 \oplus U_4 \oplus U_6 \)

\( A \cap B = U_1 \oplus U_2 \), \(A \cap C = U_1 \oplus U_3 \)

\(A \cap B + A \cap C = (U_1 \oplus U_2) + (U_1 \oplus U_3) = U_1 + U_2 + U_3 = U_1 \oplus U_2 \oplus U_3\)

Recall \( p \in A \otimes X \), so projecting to \( U_4 \oplus U_6 \) has to be 0
Similarly, \(q \in B \otimes Y \), so projecting to \(U_3 \oplus U_5 \) has to be 0

\( U_1 = A \cap B \cap C \)

\( U_2 = \text{complement of } U_1 \text{ in } A \cap B \)

\( U_3 = \text{complement of } U_1 \text{ in } A \cap C \)

\( U_4 = \text{complement of } U_1 \text{ in } B \cap C \)

\( U_5 = \text{complement of } A \cap B + A \cap C \text{ in } A \)

\( U_6 = \text{complement of } A \cap B + B \cap C \text{ in } B \)

Suffices to prove complement of \(U_5\), \(A \cap B + A \cap C \), is \( U_1 \oplus U_2 \oplus U_3 \)

Suffices to prove complement of \(U_6\), \(A \cap B + B \cap C \), is \( U_1 \oplus U_2 \oplus U_4 \)

\( A \cap B = U_1 \oplus U_2 \), \(B \cap C = U_1 \oplus U_4 \)

\(A \cap B + B \cap C = (U_1 \oplus U_2) + (U_1 \oplus U_4) = U_1 + U_2 + U_4 = U_1 \oplus U_2 \oplus U_4\)

Visually

\( (\pi_{U_4 \oplus U_6} \otimes I)(p) = 0 \) and \( (\pi_{U_3 \oplus U_5} \otimes I)(q) = 0 \)

\( (I \otimes \pi_{V_4 \oplus V_6})(p) = 0 \) and \( (I \otimes \pi_{V_3 \oplus V_5})(q) = 0 \)

looks like

At any given cell, if 2 of 3 entries are zero then the third entry is zero. This gives the zeros for \( r \)

V1 V2 V3 V4 V5 V6
U1
U2
U3
U4
U5
U6
V1 V2 V3 V4 V5 V6
U1
U2
U3
U4
U5
U6
V1 V2 V3 V4 V5 V6
U1
U2
U3
U4
U5
U6

=

+

p

q

r

Recall goal has more zeros:

V1 V2 V3 V4 V5 V6
U1
U2
U3
U4
U5
U6
V1 V2 V3 V4 V5 V6
U1
U2
U3
U4
U5
U6
V1 V2 V3 V4 V5 V6
U1
U2
U3
U4
U5
U6

=

+

p

q

r

Because \( (\pi_{U_3} \otimes I)(q) = 0\), let \(s \coloneqq (\pi_{U_3} \otimes I)(p) = (\pi_{U_3} \otimes I)(r) \)

Then \(s \in U_3 \otimes X \) and \(s \in U_3 \otimes Z \)

Hence \(s \in U_3 \otimes (X \cap Z) \)

Because \(X \cap Z = V_1 \oplus V_3\), we have \(s \in U_3 \otimes (V_1 \oplus U_3)\)

After this inference (purple denote the new zeros)

V1 V2 V3 V4 V5 V6
U1
U2
U3
U4
U5
U6
V1 V2 V3 V4 V5 V6
U1
U2
U3
U4
U5
U6
V1 V2 V3 V4 V5 V6
U1
U2
U3
U4
U5
U6

=

+

p

q

r

V1 V2 V3 V4 V5 V6
U1
U2
U3
U4
U5
U6
V1 V2 V3 V4 V5 V6
U1
U2
U3
U4
U5
U6
V1 V2 V3 V4 V5 V6
U1
U2
U3
U4
U5
U6

=

+

p

q

r

Lemma: \(s \in U \otimes V \) and \(s \in U \otimes W\) implies \(s \in U \otimes (V \cap W) \)

\( V_1 = X \cap Y \cap Z \)

\( V_3 = \text{complement of } V_1 \text{ in } X \cap Z \)

Same for \( (\pi_{U_5} \otimes I)(q) = 0\)

After this inference (purple denote the new zeros)

V1 V2 V3 V4 V5 V6
U1
U2
U3
U4
U5
U6
V1 V2 V3 V4 V5 V6
U1
U2
U3
U4
U5
U6
V1 V2 V3 V4 V5 V6
U1
U2
U3
U4
U5
U6

=

+

p

q

r

If \(s \coloneqq (\pi_{U_5} \otimes I)(p) = (\pi_{U_5} \otimes I)(r) \) then \( s \in U_5 \otimes (X \cap Z)\)

And \(X \cap Z = V_1 \oplus V_3 \)

V1 V2 V3 V4 V5 V6
U1
U2
U3
U4
U5
U6
V1 V2 V3 V4 V5 V6
U1
U2
U3
U4
U5
U6
V1 V2 V3 V4 V5 V6
U1
U2
U3
U4
U5
U6

=

+

p

q

r

Same when \(p\) is zero for a row: \( (\pi_{U_4} \otimes I)(p) = 0\) and \( (\pi_{U_6} \otimes I)(p) = 0\)

If \(s \coloneqq (\pi_{U_4} \otimes I)(q) = (\pi_{U_4} \otimes I)(r) \) then \( s \in U_4 \otimes (Y \cap Z)\)

And \(Y \cap Z = V_1 \oplus V_4 \)

After this inference (purple denote the new zeros)

V1 V2 V3 V4 V5 V6
U1
U2
U3
U4
U5
U6
V1 V2 V3 V4 V5 V6
U1
U2
U3
U4
U5
U6
V1 V2 V3 V4 V5 V6
U1
U2
U3
U4
U5
U6

=

+

p

q

r

V1 V2 V3 V4 V5 V6
U1
U2
U3
U4
U5
U6
V1 V2 V3 V4 V5 V6
U1
U2
U3
U4
U5
U6
V1 V2 V3 V4 V5 V6
U1
U2
U3
U4
U5
U6

=

+

p

q

r

Same for projections to columns \(V_3, V_4, V_5, V_6\)

After this inference (purple denote the new zeros)

V1 V2 V3 V4 V5 V6
U1
U2
U3
U4
U5
U6
V1 V2 V3 V4 V5 V6
U1
U2
U3
U4
U5
U6
V1 V2 V3 V4 V5 V6
U1
U2
U3
U4
U5
U6

=

+

p

q

r

V1 V2 V3 V4 V5 V6
U1
U2
U3
U4
U5
U6
V1 V2 V3 V4 V5 V6
U1
U2
U3
U4
U5
U6
V1 V2 V3 V4 V5 V6
U1
U2
U3
U4
U5
U6

=

+

p

q

r

If \(s \coloneqq (I \otimes \pi_{V_3})(p) = (I \otimes \pi_{V_3})(r) \) then \( s \in (A \cap C) \otimes V_3\)

And \(A \cap C = U_1 \oplus U_3 \)

If \(s \coloneqq (I \otimes \pi_{V_4})(q) = (I \otimes \pi_{V_4})(r) \) then \( s \in (B \cap C) \otimes V_4\)

And \(B \cap C = U_1 \oplus U_4 \)

Hence \( (\pi_{U_2} \otimes I)(r) \in U_2 \otimes (X \cap Y \cap Z)\)
As \(X \cap Y \cap Z = V_1 \), we conclude  \( (\pi_{U_2} \otimes \pi_{V_2})(r) = 0\)

V1 V2 V3 V4 V5 V6
U1
U2
U3
U4
U5
U6
V1 V2 V3 V4 V5 V6
U1
U2
U3
U4
U5
U6
V1 V2 V3 V4 V5 V6
U1
U2
U3
U4
U5
U6

=

+

p

q

r

After this inference (purple denote the new zeros)

V1 V2 V3 V4 V5 V6
U1
U2
U3
U4
U5
U6
V1 V2 V3 V4 V5 V6
U1
U2
U3
U4
U5
U6
V1 V2 V3 V4 V5 V6
U1
U2
U3
U4
U5
U6

=

+

p

q

r

Finally, \((\pi_{U_2} \otimes I) (r) \in U_2 \otimes (V_1 \oplus V_2) \)

But we also know

  1. \( V_1 \oplus V_2 = X \cap Y \)
  2. \( (\pi_{U_2} \otimes I)(r) \in U_2 \otimes Z \)

\( V_1 = X \cap Y \cap Z \)

\( V_2 = \text{complement of } V_1 \text{ in } X \cap Y \)

In conclusion

V1 V2 V3 V4 V5 V6
U1
U2
U3
U4
U5
U6
V1 V2 V3 V4 V5 V6
U1
U2
U3
U4
U5
U6
V1 V2 V3 V4 V5 V6
U1
U2
U3
U4
U5
U6

=

+

p

q

r

$$ p \in \textcolor{blue}{(U_1 \otimes V) \oplus (U_{>1} \otimes V_1)} \oplus \textcolor{green}{(U_2 \otimes V_2)} \oplus \textcolor{brown}{(U_3 \otimes V_3)}$$

$$q \in \textcolor{blue}{(U_1 \otimes V) \oplus (U_{>1} \otimes V_1)} \oplus \textcolor{green}{(U_2 \otimes V_2)} \oplus \textcolor{pink}{(U_4 \otimes V_4)}$$

$$r \in \textcolor{blue}{(U_1 \otimes V) \oplus (U_{>1} \otimes V_1)} \oplus \textcolor{brown}{(U_3 \otimes V_3)} \oplus \textcolor{pink}{(U_4 \otimes V_4)}$$

In bases adapted to the direct sum decompositions, the tensors \( p,q,r \) have coordinates in the above patterns

p = \begin{bmatrix} 373 & 831 & 66 & 724 & 159 & 68 \\ 772 & 812 & 372 & 663 & 579 & 209 \\ 155 & 549 & 499 & 757 & 500 & 64 \\ 218 & 733 & 547 & 132 & 342 & 122 \\ 859 & 708 & 25 & 767 & 78 & 648 \\ 992 & 398 & 894 & 611 & 169 & 953 \end{bmatrix}
q = \begin{bmatrix} 176 & 355 & 631 & 671 & 759 & 955 \\ 252 & 645 & 740 & 978 & 500 & 638 \\ 308 & 485 & 963 & 867 & 212 & 39 \\ 146 & 830 & 155 & 854 & 264 & 14 \\ 30 & 375 & 193 & 887 & 38 & 692 \\ 107 & 281 & 218 & 640 & 676 & 450 \end{bmatrix}
r = \begin{bmatrix} 549 & 189 & 697 & 398 & 918 & 26 \\ 27 & 460 & 115 & 644 & 82 & 847 \\ 463 & 37 & 465 & 627 & 712 & 103 \\ 364 & 566 & 702 & 986 & 606 & 136 \\ 889 & 86 & 218 & 657 & 116 & 343 \\ 102 & 679 & 115 & 254 & 845 & 406 \end{bmatrix}

Recall \(p+q=r\) example over \(\text{GF}(997)\)

  • Find subspaces \( U_1, \ldots, U_6 \), \(V_1, \ldots, V_6 \) in original basis (each space is cooked up to be 1D in this example)
  • Create change of basis matrix from original basis to \( (u_1,\ldots, u_6)\) and \( (v_1,\ldots, v_6) \)
  • Apply change of basis matrix to reveal pattern (\(i\)th column of \( M \) is \(u_i\) in original basis)
M = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 310 & 34 & 931 & 898 & 971 & 773 \\ 104 & 130 & 918 & 780 & 84 & 647 \\ 795 & 834 & 145 & 316 & 939 & 574 \\ 386 & 64 & 11 & 618 & 494 & 754 \\ 732 & 237 & 949 & 667 & 810 & 127 \end{bmatrix} \qquad N = \begin{bmatrix} 1 & 655 & 49 & 786 & 153 & 994 \\ 0 & 757 & 318 & 920 & 875 & 310 \\ 0 & 304 & 386 & 307 & 423 & 363 \\ 0 & 988 & 354 & 652 & 88 & 712 \\ 0 & 780 & 227 & 987 & 917 & 291 \\ 0 & 59 & 338 & 600 & 869 & 429 \end{bmatrix}
MpN = \begin{bmatrix} 373 & 16 & 259 & 0 & 968 & 0 \\ 119 & 905 & 0 & 0 & 0 & 0 \\ 966 & 0 & 123 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 647 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \quad MqN = \begin{bmatrix} 176 & 828 & 0 & 553 & 0 & 244 \\ 607 & 92 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 68 & 0 & 0 & 815 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 970 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \quad MrN = \begin{bmatrix} 549 & 844 & 259 & 553 & 968 & 244 \\ 726 & 0 & 0 & 0 & 0 & 0 \\ 966 & 0 & 123 & 0 & 0 & 0 \\ 68 & 0 & 0 & 815 & 0 & 0 \\ 647 & 0 & 0 & 0 & 0 & 0 \\ 970 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}
V1 V2 V3 V4 V5 V6
U1
U2
U3
U4
U5
U6
V1 V2 V3 V4 V5 V6
U1
U2
U3
U4
U5
U6
V1 V2 V3 V4 V5 V6
U1
U2
U3
U4
U5
U6

=

+

p

q

r

Takeaway: The equation \(p+q = r \text{ in } U \otimes V \) allows for direct-sum decompositions of \( U \) and \( V \) in a compatible manner

Original motivation

Let \(p \coloneqq x(u \otimes v) \), \(q \coloneqq y(u \otimes v) \) and \(r \coloneqq z(u \otimes v) \)

Write as \(p = \sum_i (\alpha_i u) \otimes (f_i v) \), \(q = \sum_j (\beta_j u) \otimes (g_j v) \), \(r = \sum_k (\gamma_k u) \otimes (h_k v) \)

Fix some \( u \in U \) and \( v \in V \)

Let \(x,y,z \in \text{End}(U \otimes V) \) such that

  • \(x(u\otimes v) + y(u \otimes v) = z(u \otimes v) \) - a derivation condition
  • and \( x = \sum_i \alpha_i \otimes f_i, y = \sum_j \beta_j \otimes g_j, z = \sum_k \gamma_k \otimes h_k \) under identification \( \text{End}(U \otimes V) \cong \text{End}(U) \otimes \text{End}(V) \)

Translating to above context

  • \(u_1 = \tilde{\alpha}u = \tilde{\beta}u = \tilde{\gamma} u \)
    • \(\tilde{\alpha} \in \text{span} \{\alpha_i\} \), \(\tilde{\beta} \in \text{span} \{\beta_j\} \), \(\tilde{\gamma} \in \text{span} \{\gamma_k\} \)
    • \( (\tilde{\alpha}, \tilde{\beta}, \tilde{\gamma}) \) is in the centroid of \( u \)
  • \( p_u = \tilde{f}u, q_u = \tilde{g}u, r_u = \tilde{h}u \), so \( (\tilde{f}, \tilde{g}, \tilde{h})\) is in the derivation of \( u \)
V1 V2 V3 V4 V5 V6
U1
U2
U3
U4
U5
U6
V1 V2 V3 V4 V5 V6
U1
U2
U3
U4
U5
U6
V1 V2 V3 V4 V5 V6
U1
U2
U3
U4
U5
U6

=

+

p

q

r

Project to 1-dimensional subspace \(\langle u_1 \rangle \leq U_1\): \( (\pi_{\langle u_1 \rangle} \otimes I)(p) + (\pi_{\langle u_1 \rangle} \otimes I)(q) = (\pi_{\langle u_1 \rangle} \otimes I)(r) \)

Write as \( p_u + q_u = r_u \), and observe \( p_u \in (\langle u_1 \rangle \otimes X) \cong X \), \(q_u \in (\langle u_1 \rangle \otimes Y) \cong Y \), and \( r_u \in (\langle u_1 \rangle \otimes Z) \cong Z \)

V1 V2 V3 V4 V5 V6
U1
U2
U3
U4
U5
U6
V1 V2 V3 V4 V5 V6
U1
U2
U3
U4
U5
U6
V1 V2 V3 V4 V5 V6
U1
U2
U3
U4
U5
U6

=

+

p

q

r

Project to 1-dimensional subspace \(\langle u \rangle \leq U_1\): \( (\pi_{\langle u \rangle} \otimes I)(p) + (\pi_{\langle u \rangle} \otimes I)(q) = (\pi_{\langle u \rangle} \otimes I)(r) \)

Write as \( p_u + q_u = r_u \), and observe \( p_u \in (\langle u \rangle \otimes X) \cong X \), \(q_u \in (\langle u \rangle \otimes Y) \cong Y \), and \( r_u \in (\langle u \rangle \otimes Z) \cong Z \)

This is an equation in \(V\), and symmetrically we get equations in \(U\) projecting to \( \langle v \rangle \leq V_1\)

Similar, project to one dimensional subspaces

(e.g \( \langle u \rangle \leq U_2 \) and \( \langle v \rangle \leq V_2 \), then \( (\pi_{\langle u \rangle} \otimes \pi_{\langle v \rangle})(p) + (\pi_{\langle u \rangle} \otimes \pi_{\langle v \rangle})(q) = 0 \).

Write as \(p_u + q_u = 0 \), and observe \(p_u, q_u \in \langle u \rangle \otimes \langle v \rangle \cong K \) are just scalars

Takeaway: \(p+q =r \text{ in } U \otimes V \) ("2D" equation) is actually a collection of equations on subspaces of \(U\) and \(V\) ("1D" conditions)

(Side goal)

Classify the possible dimensions using \( p+q+r=s \) constraint using Kronecker Canonical Form

\( (I_n, M) \) where M is a full rank linear transformation in JNF  - \(\text{dim}(U_1) = \text{dim}(V_1) = n \)

\( (I_n, J_n(0) ) \) where \( J_n(0) \) is size \(n\) Jordan block for eigenvalue \(0 \)  - \(\text{dim}(U_1) = \text{dim}(V_1) = n-1, \text{dim}(U_3) = \text{dim}(V_3) = 1 \)

\(\epsilon_1\) = \( \left( \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}\right) \)  (size \( 1 \) left minimal index) - \(\text{dim}(V_1) = 1, \text{dim}(U_5) = 1, \text{dim}(U_6) = 1 \)

\(\eta_1\) = \( \left( \begin{bmatrix} 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \end{bmatrix}\right) \)  (size \( 1 \) right minimal index) - \(\text{dim}(U_1) = 1, \text{dim}(V_5) = 1, \text{dim}(V_6) = 1 \)

\(\epsilon_n\) =  (size \( n \) left minimal index, a pair of \((n+1) \times n\) matrices ) - \(\text{dim}(V_1) = n, \text{dim}(U_1) = n-2, \text{dim}(U_2) = \text{dim}(U_3) = \text{dim}(U_4) = 1 \)

\(\eta_n\) =  (size \( n \) right minimal index, a pair of \( n \times (n+1) \) matrices ) - \(\text{dim}(U_1) = n, \text{dim}(V_1) = n-2, \text{dim}(V_2) = \text{dim}(V_3) = \text{dim}(V_4) = 1 \)

All possible dimensions are sums of dimensions of above as Kroncker canonical form is direct sum of these blocks

Key fact: \( C_0 \leq A_0 \oplus B_0 \) gives uniqueness on the \(U_5, U_6\) region

What about \( p+q+r = s \)?

Counterexample to naive shared on one factor, der on the other factor

\(p = a \otimes x \in A \otimes X \)

\(q = b \otimes y \in B \otimes Y \)

\(r = c \otimes z \in C \otimes Z \)

\(s = d \otimes w \in D \otimes W \)

Where

  \( d = e_1 + e_2, w = f_1 + f_2 \),

  \(a = e_1 - e_2, x = f_1 - f_2 \),

  \(b = 2e_1, y = f_2 \),

  \(c = 2e_2, z = f_1 \)

 

Then \(\{a,b,c,d\} \) span pairwise disjoint spaces, and the same for \( \{x,y,z,w\} \). The relations are \(d = a+c \) and \(w = x + 2y \). (No "centroid" like relation here)

 

\( (a,c,d) \) are sort of a \(\text{Der}_{310}(s) \) and \( (x,y,w) \) are sort of a \(\text{Der}_{320}(t) \) condition.

This says unlike the 3-tensor case, expanding \( (a_i, b_i, c_i, d_i) \) (or symmetrically \( (x_i,y_i,z_i,w_i) \) ) on appropriate common subspaces will not give a correct expansion. What's needed is a smarter strategy. Try induction? Or frame this technique as fundamentally less visual

TODO:

Lemma 1 (compatible expansion): Given \(p+q+r=s \), there exists \(a_i,b_i,c_i,d_i, x_i,y_i,z_i,w_i \) such that \( \forall i, a_i \otimes x_i + b_i \otimes y_i + c_i \otimes z_i = d_i \otimes w_i \), and \( a_i \in A \) and so forth, and \( \sum_i a_i \otimes x_i = p\) and so forth 

 

Lemma 2: An equation of the form \( a \otimes x + b \otimes y + c \otimes z = d \otimes w \) can only be of a few forms, all having colinear pieces except one where \(\text{span}\{a,b,c\} \) and \( \text{span}\{x,y,z\} \) are both 2-dimensional. Roughly speaking, each equation is a derivation part combined with a centroid part, except this last case which is combining two non-overlapping derivation parts.

 

Lemma 3 (compatible decomposition): It is possible to decompose each of the spaces U and V into pairwise intersection cases, 2-dimensional span cases, and the rest of the cases.

 

Lemma 4: After this splitting the nonzero cells of the compatible decomposition has a structured and predictable pattern that works with the compatible expansion.

 

Lemma 5: This compatible expansion pattern can be interpreted in context of the derivation algebra of the product of higher valence tensors in a general way. 

For \(p+q=r\) equations, compatible decomposition leads to compatible expansion leads to factor-wise (local) constraints leads to local to global understanding of der. This fact is no longer true for equations of the form \( p+q+r = s \)

Attempts:

  • Non-constructive proof of the existence of compatible expansions?
  • Non-decomposition based algorithm? (allow for "duplicates")
  • Non-algorithmic justifications (allow for "existence" arguments)
  • Expand just along 1 direction rather than 2 and use pure tensor argument to relate individual sums
    • Need to expand in a clever fashion to ensure terms are all in the right spaces...

Assuming we can prove the existence of a compatible expansion for equations of the form \( p+q+r=s \), what can we say about translating this expansion into factor-wise constraints?

Made with Slides.com