These slides are a record keeping tool and will not be used at for any actual presentations, hence the tiny font size and color choices at times
Let \( p \in U \otimes V\)
Fact: There exists subspaces \(A \leq U, X \leq V\) of minimal dimension such that \( p \in A \otimes X\) and \(\text{dim}(A) = \text{dim}(X) \)
Throughout \( U \) and \( V \) will be finite dimensional vector spaces
Proof:
Let \(\{e_1,\ldots, e_m\}\) a basis of \( U \), \(\{f_1,\ldots, f_n\}\) a basis of \( V \)
Write in this basis \( p = \sum_{i,j} P_{ij} e_i \otimes f_j \)
Rank decompose coefficient matrix \(P\) as \( P = CF = \sum_{i=1}^{r}C_i F_i^T\)
Let \(a_k = \sum_{i=1}^{m}C_{ik}e_i \) and \(b_k = \sum_{j=1}^{n}F_{kj}f_j \)
Then \(\sum_{k=1}^{r} a_k \otimes b_k = \sum_{k=1}^{r}(\sum_{i=1}^{m}C_{ik}e_i \otimes \sum_{j=1}^{n}F_{kj}f_j) = \sum_{ij}P_{ij}e_i \otimes f_j = p\) and minimality by rank factorization of matrices.
The spaces \(A\) and \(X\) can be taken as the span of the \( \{a_k\} \) and \( \{b_k\} \) respectively.
\( p = \sum_{ij} P_{ij} e_i \otimes f_j \), \(a_1 = 1 e_1 + 2 e_2 + 3 e_3 \), \( b_1 = 1f_1 + 2 f_2 + 3 f_3 \), and so on
Consider the equation \( p+q=r \) in \( U \otimes V \), with \(U\) and \(V\) over \( \text{GF}(997) \)
We know \( p+q = r \) means the equation holds entrywise,
but is there a basis which tells us something more?
Consider the equation \( p+q=r \) in \( U \otimes V \)
Goal (compatible decomposition): choose decompositions \(U = \bigoplus_{i=1}^{6} U_i\) and \(V = \bigoplus_{j=1}^{6}V_j\) such that
$$ p \in \textcolor{blue}{(U_1 \otimes V) \oplus (U_{>1} \otimes V_1)} \oplus \textcolor{green}{(U_2 \otimes V_2)} \oplus \textcolor{brown}{(U_3 \otimes V_3)}$$
$$q \in \textcolor{blue}{(U_1 \otimes V) \oplus (U_{>1} \otimes V_1)} \oplus \textcolor{green}{(U_2 \otimes V_2)} \oplus \textcolor{pink}{(U_4 \otimes V_4)}$$
$$r \in \textcolor{blue}{(U_1 \otimes V) \oplus (U_{>1} \otimes V_1)} \oplus \textcolor{brown}{(U_3 \otimes V_3)} \oplus \textcolor{pink}{(U_4 \otimes V_4)}$$
| V1 | V2 | V3 | V4 | V5 | V6 | |
| U1 | ||||||
| U2 | ||||||
| U3 | ||||||
| U4 | ||||||
| U5 | ||||||
| U6 |
| V1 | V2 | V3 | V4 | V5 | V6 | |
| U1 | * | * | * | * | * | |
| U2 | * | * | ||||
| U3 | * | |||||
| U4 | * | * | ||||
| U5 | ||||||
| U6 | * |
| V1 | V2 | V3 | V4 | V5 | V6 | |
| U1 | * | * | * | * | * | * |
| U2 | * | |||||
| U3 | * | * | ||||
| U4 | * | * | ||||
| U5 | * | |||||
| U6 |
=
+
p
q
r
* In this picture, we assume \( U = A+B \) , \( V = X+Y \)
This can always be done by a preprocessing step
(Less ambitious) Compatible expansion goal that's still sufficient for derivation of product of tensors result
Find \(a_i, b_i, c_i, x_i,y_i,z_i\) such that
(By decomposing the spaces, we separate out the individual equations into a few different types, categorized by what kind of equations can satisfy \( a \otimes x + b \otimes y = c \otimes z\))
Compatible decomposition implies compatible expansion as the \( (U5\oplus U6) \otimes (V5 \oplus V6) \) bottom right corner is empty so we can expand on the left/right basis strategically
\( p \in A \otimes X \)
Let subspaces \(A,B,C \leq U\), and subspaces \(X,Y,Z \leq V \) be of minimum dimension such that
\( q \in B \otimes Y \)
\( r \in C \otimes Z \)
Recall \( p,q,r \in U \otimes V \) such that \( p+q=r \)
First, prove the sum \( \mathcal{U} := U_1 + U_2 + U_3 + U_4\) is direct
\( U_1 = A \cap B \cap C \)
\( U_2 = \text{complement of } U_1 \text{ in } A \cap B \)
\( U_3 = \text{complement of } U_1 \text{ in } A \cap C \)
\( U_4 = \text{complement of } U_1 \text{ in } B \cap C \)
\( U_1 \cap (U_2 + U_3 + U_4) = \{0\} \)
Second, prove \( (\mathcal{U} + U_5) \cap U_6 = \{0\} \)
Lastly, prove \( \mathcal{U} \cap U_5 = \{0\} \)
\( U_5 = \text{complement of } A \cap B + A \cap C \text{ in } A \)
\( U_6 = \text{complement of } A \cap B + B \cap C \text{ in } B \)
\( U_2 + U_3 + U_4 \) sum is direct
Let \(u_{ABC} = u_{AB} + u_{AC} + u_{BC} \) be in the intersection
\(u_{ABC}, u_{AC}, u_{BC} \in C \) implies \(u_{AB} \in C \)
But \(u_{AB} \in C\) and \(u_{AB} \in U_2\) implies \(u_{AB} \in U_1 \cap U_2\), hence \(u_{AB} = 0\)
Same argument gives \( u_{AC} \in B \) implies \( u_{AC} = 0 \)
Same argument gives \(u_{BC} = 0 \)
Prove \( U_2 \cap (U_3 + U_4) = \{0\} \) by same argument as above with \(u_{AB} = u_{AC} + u_{BC} \) concluding \(u_{AB} \in C \), which implies \(u_{AB} = 0\)
Let \( u_{ABC} + u_{AB} + u_{AC} + u_{BC} + u_5 = u_6 \) in the intersection
Since \( u_6, u_{ABC}, u_{AB}, u_{BC} \in B \), we have \( u_{AC} + u_5 \in B \)
But \( u_{AC} + u_5 \in A \), so \( u_{AC} + u_5 \in A \cap B \)
\( u_{AB} + (u_{AC} + u_5) \in A \cap B \) and \( u_{ABC} + u_{BC} \in B \cap C \)
\( u_6 = (u_{AB} + (u_{AC} + u_5)) + (u_{ABC} + u_{BC}) \) and \( U_6 \) is complement of \( A \cap B + B \cap C \), hence \( u_6 = 0 \).
Let \( u_{ABC} + u_{AB} + u_{AC} + u_{BC} = u_5 \) in the intersection.
Since \( u_5, u_{ABC}, u_{AB}, u_{AC} \in A \), we have \( u_{BC} \in A \)
But \( u_{BC} \in A \) and \( u_{BC} \in U_4 \) implies \( u_{BC} = 0 \)
\( (u_{ABC} + u_{AB}) + u_{AC} \in A \cap B + A \cap C \), and \( U_5 \) is complement of \( A \cap B + A \cap C \), hence \( u_5 = 0 \)
Claim: \(A = U_1 \oplus U_2 \oplus U_3 \oplus U_5 \)
Claim: \(B = U_1 \oplus U_2 \oplus U_4 \oplus U_6 \)
\( A \cap B = U_1 \oplus U_2 \), \(A \cap C = U_1 \oplus U_3 \)
\(A \cap B + A \cap C = (U_1 \oplus U_2) + (U_1 \oplus U_3) = U_1 + U_2 + U_3 = U_1 \oplus U_2 \oplus U_3\)
Recall \( p \in A \otimes X \), so projecting to \( U_4 \oplus U_6 \) has to be 0
Similarly, \(q \in B \otimes Y \), so projecting to \(U_3 \oplus U_5 \) has to be 0
\( U_1 = A \cap B \cap C \)
\( U_2 = \text{complement of } U_1 \text{ in } A \cap B \)
\( U_3 = \text{complement of } U_1 \text{ in } A \cap C \)
\( U_4 = \text{complement of } U_1 \text{ in } B \cap C \)
\( U_5 = \text{complement of } A \cap B + A \cap C \text{ in } A \)
\( U_6 = \text{complement of } A \cap B + B \cap C \text{ in } B \)
Suffices to prove complement of \(U_5\), \(A \cap B + A \cap C \), is \( U_1 \oplus U_2 \oplus U_3 \)
Suffices to prove complement of \(U_6\), \(A \cap B + B \cap C \), is \( U_1 \oplus U_2 \oplus U_4 \)
\( A \cap B = U_1 \oplus U_2 \), \(B \cap C = U_1 \oplus U_4 \)
\(A \cap B + B \cap C = (U_1 \oplus U_2) + (U_1 \oplus U_4) = U_1 + U_2 + U_4 = U_1 \oplus U_2 \oplus U_4\)
Visually
\( (\pi_{U_4 \oplus U_6} \otimes I)(p) = 0 \) and \( (\pi_{U_3 \oplus U_5} \otimes I)(q) = 0 \)
\( (I \otimes \pi_{V_4 \oplus V_6})(p) = 0 \) and \( (I \otimes \pi_{V_3 \oplus V_5})(q) = 0 \)
looks like
At any given cell, if 2 of 3 entries are zero then the third entry is zero. This gives the zeros for \( r \)
| V1 | V2 | V3 | V4 | V5 | V6 | |
| U1 | ||||||
| U2 | ||||||
| U3 | ||||||
| U4 | ||||||
| U5 | ||||||
| U6 |
| V1 | V2 | V3 | V4 | V5 | V6 | |
| U1 | ||||||
| U2 | ||||||
| U3 | ||||||
| U4 | ||||||
| U5 | ||||||
| U6 |
| V1 | V2 | V3 | V4 | V5 | V6 | |
| U1 | ||||||
| U2 | ||||||
| U3 | ||||||
| U4 | ||||||
| U5 | ||||||
| U6 |
=
+
p
q
r
Recall goal has more zeros:
| V1 | V2 | V3 | V4 | V5 | V6 | |
| U1 | ||||||
| U2 | ||||||
| U3 | ||||||
| U4 | ||||||
| U5 | ||||||
| U6 |
| V1 | V2 | V3 | V4 | V5 | V6 | |
| U1 | ||||||
| U2 | ||||||
| U3 | ||||||
| U4 | ||||||
| U5 | ||||||
| U6 |
| V1 | V2 | V3 | V4 | V5 | V6 | |
| U1 | ||||||
| U2 | ||||||
| U3 | ||||||
| U4 | ||||||
| U5 | ||||||
| U6 |
=
+
p
q
r
Because \( (\pi_{U_3} \otimes I)(q) = 0\), let \(s \coloneqq (\pi_{U_3} \otimes I)(p) = (\pi_{U_3} \otimes I)(r) \)
Then \(s \in U_3 \otimes X \) and \(s \in U_3 \otimes Z \)
Hence \(s \in U_3 \otimes (X \cap Z) \)
Because \(X \cap Z = V_1 \oplus V_3\), we have \(s \in U_3 \otimes (V_1 \oplus U_3)\)
After this inference (purple denote the new zeros)
| V1 | V2 | V3 | V4 | V5 | V6 | |
| U1 | ||||||
| U2 | ||||||
| U3 | ||||||
| U4 | ||||||
| U5 | ||||||
| U6 |
| V1 | V2 | V3 | V4 | V5 | V6 | |
| U1 | ||||||
| U2 | ||||||
| U3 | ||||||
| U4 | ||||||
| U5 | ||||||
| U6 |
| V1 | V2 | V3 | V4 | V5 | V6 | |
| U1 | ||||||
| U2 | ||||||
| U3 | ||||||
| U4 | ||||||
| U5 | ||||||
| U6 |
=
+
p
q
r
| V1 | V2 | V3 | V4 | V5 | V6 | |
| U1 | ||||||
| U2 | ||||||
| U3 | ||||||
| U4 | ||||||
| U5 | ||||||
| U6 |
| V1 | V2 | V3 | V4 | V5 | V6 | |
| U1 | ||||||
| U2 | ||||||
| U3 | ||||||
| U4 | ||||||
| U5 | ||||||
| U6 |
| V1 | V2 | V3 | V4 | V5 | V6 | |
| U1 | ||||||
| U2 | ||||||
| U3 | ||||||
| U4 | ||||||
| U5 | ||||||
| U6 |
=
+
p
q
r
Lemma: \(s \in U \otimes V \) and \(s \in U \otimes W\) implies \(s \in U \otimes (V \cap W) \)
\( V_1 = X \cap Y \cap Z \)
\( V_3 = \text{complement of } V_1 \text{ in } X \cap Z \)
Same for \( (\pi_{U_5} \otimes I)(q) = 0\)
After this inference (purple denote the new zeros)
| V1 | V2 | V3 | V4 | V5 | V6 | |
| U1 | ||||||
| U2 | ||||||
| U3 | ||||||
| U4 | ||||||
| U5 | ||||||
| U6 |
| V1 | V2 | V3 | V4 | V5 | V6 | |
| U1 | ||||||
| U2 | ||||||
| U3 | ||||||
| U4 | ||||||
| U5 | ||||||
| U6 |
| V1 | V2 | V3 | V4 | V5 | V6 | |
| U1 | ||||||
| U2 | ||||||
| U3 | ||||||
| U4 | ||||||
| U5 | ||||||
| U6 |
=
+
p
q
r
If \(s \coloneqq (\pi_{U_5} \otimes I)(p) = (\pi_{U_5} \otimes I)(r) \) then \( s \in U_5 \otimes (X \cap Z)\)
And \(X \cap Z = V_1 \oplus V_3 \)
| V1 | V2 | V3 | V4 | V5 | V6 | |
| U1 | ||||||
| U2 | ||||||
| U3 | ||||||
| U4 | ||||||
| U5 | ||||||
| U6 |
| V1 | V2 | V3 | V4 | V5 | V6 | |
| U1 | ||||||
| U2 | ||||||
| U3 | ||||||
| U4 | ||||||
| U5 | ||||||
| U6 |
| V1 | V2 | V3 | V4 | V5 | V6 | |
| U1 | ||||||
| U2 | ||||||
| U3 | ||||||
| U4 | ||||||
| U5 | ||||||
| U6 |
=
+
p
q
r
Same when \(p\) is zero for a row: \( (\pi_{U_4} \otimes I)(p) = 0\) and \( (\pi_{U_6} \otimes I)(p) = 0\)
If \(s \coloneqq (\pi_{U_4} \otimes I)(q) = (\pi_{U_4} \otimes I)(r) \) then \( s \in U_4 \otimes (Y \cap Z)\)
And \(Y \cap Z = V_1 \oplus V_4 \)
After this inference (purple denote the new zeros)
| V1 | V2 | V3 | V4 | V5 | V6 | |
| U1 | ||||||
| U2 | ||||||
| U3 | ||||||
| U4 | ||||||
| U5 | ||||||
| U6 |
| V1 | V2 | V3 | V4 | V5 | V6 | |
| U1 | ||||||
| U2 | ||||||
| U3 | ||||||
| U4 | ||||||
| U5 | ||||||
| U6 |
| V1 | V2 | V3 | V4 | V5 | V6 | |
| U1 | ||||||
| U2 | ||||||
| U3 | ||||||
| U4 | ||||||
| U5 | ||||||
| U6 |
=
+
p
q
r
| V1 | V2 | V3 | V4 | V5 | V6 | |
| U1 | ||||||
| U2 | ||||||
| U3 | ||||||
| U4 | ||||||
| U5 | ||||||
| U6 |
| V1 | V2 | V3 | V4 | V5 | V6 | |
| U1 | ||||||
| U2 | ||||||
| U3 | ||||||
| U4 | ||||||
| U5 | ||||||
| U6 |
| V1 | V2 | V3 | V4 | V5 | V6 | |
| U1 | ||||||
| U2 | ||||||
| U3 | ||||||
| U4 | ||||||
| U5 | ||||||
| U6 |
=
+
p
q
r
Same for projections to columns \(V_3, V_4, V_5, V_6\)
After this inference (purple denote the new zeros)
| V1 | V2 | V3 | V4 | V5 | V6 | |
| U1 | ||||||
| U2 | ||||||
| U3 | ||||||
| U4 | ||||||
| U5 | ||||||
| U6 |
| V1 | V2 | V3 | V4 | V5 | V6 | |
| U1 | ||||||
| U2 | ||||||
| U3 | ||||||
| U4 | ||||||
| U5 | ||||||
| U6 |
| V1 | V2 | V3 | V4 | V5 | V6 | |
| U1 | ||||||
| U2 | ||||||
| U3 | ||||||
| U4 | ||||||
| U5 | ||||||
| U6 |
=
+
p
q
r
| V1 | V2 | V3 | V4 | V5 | V6 | |
| U1 | ||||||
| U2 | ||||||
| U3 | ||||||
| U4 | ||||||
| U5 | ||||||
| U6 |
| V1 | V2 | V3 | V4 | V5 | V6 | |
| U1 | ||||||
| U2 | ||||||
| U3 | ||||||
| U4 | ||||||
| U5 | ||||||
| U6 |
| V1 | V2 | V3 | V4 | V5 | V6 | |
| U1 | ||||||
| U2 | ||||||
| U3 | ||||||
| U4 | ||||||
| U5 | ||||||
| U6 |
=
+
p
q
r
If \(s \coloneqq (I \otimes \pi_{V_3})(p) = (I \otimes \pi_{V_3})(r) \) then \( s \in (A \cap C) \otimes V_3\)
And \(A \cap C = U_1 \oplus U_3 \)
If \(s \coloneqq (I \otimes \pi_{V_4})(q) = (I \otimes \pi_{V_4})(r) \) then \( s \in (B \cap C) \otimes V_4\)
And \(B \cap C = U_1 \oplus U_4 \)
Hence \( (\pi_{U_2} \otimes I)(r) \in U_2 \otimes (X \cap Y \cap Z)\)
As \(X \cap Y \cap Z = V_1 \), we conclude \( (\pi_{U_2} \otimes \pi_{V_2})(r) = 0\)
| V1 | V2 | V3 | V4 | V5 | V6 | |
| U1 | ||||||
| U2 | ||||||
| U3 | ||||||
| U4 | ||||||
| U5 | ||||||
| U6 |
| V1 | V2 | V3 | V4 | V5 | V6 | |
| U1 | ||||||
| U2 | ||||||
| U3 | ||||||
| U4 | ||||||
| U5 | ||||||
| U6 |
| V1 | V2 | V3 | V4 | V5 | V6 | |
| U1 | ||||||
| U2 | ||||||
| U3 | ||||||
| U4 | ||||||
| U5 | ||||||
| U6 |
=
+
p
q
r
After this inference (purple denote the new zeros)
| V1 | V2 | V3 | V4 | V5 | V6 | |
| U1 | ||||||
| U2 | ||||||
| U3 | ||||||
| U4 | ||||||
| U5 | ||||||
| U6 |
| V1 | V2 | V3 | V4 | V5 | V6 | |
| U1 | ||||||
| U2 | ||||||
| U3 | ||||||
| U4 | ||||||
| U5 | ||||||
| U6 |
| V1 | V2 | V3 | V4 | V5 | V6 | |
| U1 | ||||||
| U2 | ||||||
| U3 | ||||||
| U4 | ||||||
| U5 | ||||||
| U6 |
=
+
p
q
r
Finally, \((\pi_{U_2} \otimes I) (r) \in U_2 \otimes (V_1 \oplus V_2) \)
But we also know
\( V_1 = X \cap Y \cap Z \)
\( V_2 = \text{complement of } V_1 \text{ in } X \cap Y \)
In conclusion
| V1 | V2 | V3 | V4 | V5 | V6 | |
| U1 | ||||||
| U2 | ||||||
| U3 | ||||||
| U4 | ||||||
| U5 | ||||||
| U6 |
| V1 | V2 | V3 | V4 | V5 | V6 | |
| U1 | ||||||
| U2 | ||||||
| U3 | ||||||
| U4 | ||||||
| U5 | ||||||
| U6 |
| V1 | V2 | V3 | V4 | V5 | V6 | |
| U1 | ||||||
| U2 | ||||||
| U3 | ||||||
| U4 | ||||||
| U5 | ||||||
| U6 |
=
+
p
q
r
$$ p \in \textcolor{blue}{(U_1 \otimes V) \oplus (U_{>1} \otimes V_1)} \oplus \textcolor{green}{(U_2 \otimes V_2)} \oplus \textcolor{brown}{(U_3 \otimes V_3)}$$
$$q \in \textcolor{blue}{(U_1 \otimes V) \oplus (U_{>1} \otimes V_1)} \oplus \textcolor{green}{(U_2 \otimes V_2)} \oplus \textcolor{pink}{(U_4 \otimes V_4)}$$
$$r \in \textcolor{blue}{(U_1 \otimes V) \oplus (U_{>1} \otimes V_1)} \oplus \textcolor{brown}{(U_3 \otimes V_3)} \oplus \textcolor{pink}{(U_4 \otimes V_4)}$$
In bases adapted to the direct sum decompositions, the tensors \( p,q,r \) have coordinates in the above patterns
Recall \(p+q=r\) example over \(\text{GF}(997)\)
| V1 | V2 | V3 | V4 | V5 | V6 | |
| U1 | ||||||
| U2 | ||||||
| U3 | ||||||
| U4 | ||||||
| U5 | ||||||
| U6 |
| V1 | V2 | V3 | V4 | V5 | V6 | |
| U1 | ||||||
| U2 | ||||||
| U3 | ||||||
| U4 | ||||||
| U5 | ||||||
| U6 |
| V1 | V2 | V3 | V4 | V5 | V6 | |
| U1 | ||||||
| U2 | ||||||
| U3 | ||||||
| U4 | ||||||
| U5 | ||||||
| U6 |
=
+
p
q
r
Takeaway: The equation \(p+q = r \text{ in } U \otimes V \) allows for direct-sum decompositions of \( U \) and \( V \) in a compatible manner
Let \(p \coloneqq x(u \otimes v) \), \(q \coloneqq y(u \otimes v) \) and \(r \coloneqq z(u \otimes v) \)
Write as \(p = \sum_i (\alpha_i u) \otimes (f_i v) \), \(q = \sum_j (\beta_j u) \otimes (g_j v) \), \(r = \sum_k (\gamma_k u) \otimes (h_k v) \)
Fix some \( u \in U \) and \( v \in V \)
Let \(x,y,z \in \text{End}(U \otimes V) \) such that
Translating to above context
| V1 | V2 | V3 | V4 | V5 | V6 | |
| U1 | ||||||
| U2 | ||||||
| U3 | ||||||
| U4 | ||||||
| U5 | ||||||
| U6 |
| V1 | V2 | V3 | V4 | V5 | V6 | |
| U1 | ||||||
| U2 | ||||||
| U3 | ||||||
| U4 | ||||||
| U5 | ||||||
| U6 |
| V1 | V2 | V3 | V4 | V5 | V6 | |
| U1 | ||||||
| U2 | ||||||
| U3 | ||||||
| U4 | ||||||
| U5 | ||||||
| U6 |
=
+
p
q
r
Project to 1-dimensional subspace \(\langle u_1 \rangle \leq U_1\): \( (\pi_{\langle u_1 \rangle} \otimes I)(p) + (\pi_{\langle u_1 \rangle} \otimes I)(q) = (\pi_{\langle u_1 \rangle} \otimes I)(r) \)
Write as \( p_u + q_u = r_u \), and observe \( p_u \in (\langle u_1 \rangle \otimes X) \cong X \), \(q_u \in (\langle u_1 \rangle \otimes Y) \cong Y \), and \( r_u \in (\langle u_1 \rangle \otimes Z) \cong Z \)
| V1 | V2 | V3 | V4 | V5 | V6 | |
| U1 | ||||||
| U2 | ||||||
| U3 | ||||||
| U4 | ||||||
| U5 | ||||||
| U6 |
| V1 | V2 | V3 | V4 | V5 | V6 | |
| U1 | ||||||
| U2 | ||||||
| U3 | ||||||
| U4 | ||||||
| U5 | ||||||
| U6 |
| V1 | V2 | V3 | V4 | V5 | V6 | |
| U1 | ||||||
| U2 | ||||||
| U3 | ||||||
| U4 | ||||||
| U5 | ||||||
| U6 |
=
+
p
q
r
Project to 1-dimensional subspace \(\langle u \rangle \leq U_1\): \( (\pi_{\langle u \rangle} \otimes I)(p) + (\pi_{\langle u \rangle} \otimes I)(q) = (\pi_{\langle u \rangle} \otimes I)(r) \)
Write as \( p_u + q_u = r_u \), and observe \( p_u \in (\langle u \rangle \otimes X) \cong X \), \(q_u \in (\langle u \rangle \otimes Y) \cong Y \), and \( r_u \in (\langle u \rangle \otimes Z) \cong Z \)
This is an equation in \(V\), and symmetrically we get equations in \(U\) projecting to \( \langle v \rangle \leq V_1\)
Similar, project to one dimensional subspaces
(e.g \( \langle u \rangle \leq U_2 \) and \( \langle v \rangle \leq V_2 \), then \( (\pi_{\langle u \rangle} \otimes \pi_{\langle v \rangle})(p) + (\pi_{\langle u \rangle} \otimes \pi_{\langle v \rangle})(q) = 0 \).
Write as \(p_u + q_u = 0 \), and observe \(p_u, q_u \in \langle u \rangle \otimes \langle v \rangle \cong K \) are just scalars
Takeaway: \(p+q =r \text{ in } U \otimes V \) ("2D" equation) is actually a collection of equations on subspaces of \(U\) and \(V\) ("1D" conditions)
(Side goal)
Classify the possible dimensions using \( p+q+r=s \) constraint using Kronecker Canonical Form
\( (I_n, M) \) where M is a full rank linear transformation in JNF - \(\text{dim}(U_1) = \text{dim}(V_1) = n \)
\( (I_n, J_n(0) ) \) where \( J_n(0) \) is size \(n\) Jordan block for eigenvalue \(0 \) - \(\text{dim}(U_1) = \text{dim}(V_1) = n-1, \text{dim}(U_3) = \text{dim}(V_3) = 1 \)
\(\epsilon_1\) = \( \left( \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}\right) \) (size \( 1 \) left minimal index) - \(\text{dim}(V_1) = 1, \text{dim}(U_5) = 1, \text{dim}(U_6) = 1 \)
\(\eta_1\) = \( \left( \begin{bmatrix} 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \end{bmatrix}\right) \) (size \( 1 \) right minimal index) - \(\text{dim}(U_1) = 1, \text{dim}(V_5) = 1, \text{dim}(V_6) = 1 \)
\(\epsilon_n\) = (size \( n \) left minimal index, a pair of \((n+1) \times n\) matrices ) - \(\text{dim}(V_1) = n, \text{dim}(U_1) = n-2, \text{dim}(U_2) = \text{dim}(U_3) = \text{dim}(U_4) = 1 \)
\(\eta_n\) = (size \( n \) right minimal index, a pair of \( n \times (n+1) \) matrices ) - \(\text{dim}(U_1) = n, \text{dim}(V_1) = n-2, \text{dim}(V_2) = \text{dim}(V_3) = \text{dim}(V_4) = 1 \)
All possible dimensions are sums of dimensions of above as Kroncker canonical form is direct sum of these blocks
Key fact: \( C_0 \leq A_0 \oplus B_0 \) gives uniqueness on the \(U_5, U_6\) region
What about \( p+q+r = s \)?
Counterexample to naive shared on one factor, der on the other factor
\(p = a \otimes x \in A \otimes X \)
\(q = b \otimes y \in B \otimes Y \)
\(r = c \otimes z \in C \otimes Z \)
\(s = d \otimes w \in D \otimes W \)
Where
\( d = e_1 + e_2, w = f_1 + f_2 \),
\(a = e_1 - e_2, x = f_1 - f_2 \),
\(b = 2e_1, y = f_2 \),
\(c = 2e_2, z = f_1 \)
Then \(\{a,b,c,d\} \) span pairwise disjoint spaces, and the same for \( \{x,y,z,w\} \). The relations are \(d = a+c \) and \(w = x + 2y \). (No "centroid" like relation here)
\( (a,c,d) \) are sort of a \(\text{Der}_{310}(s) \) and \( (x,y,w) \) are sort of a \(\text{Der}_{320}(t) \) condition.
This says unlike the 3-tensor case, expanding \( (a_i, b_i, c_i, d_i) \) (or symmetrically \( (x_i,y_i,z_i,w_i) \) ) on appropriate common subspaces will not give a correct expansion. What's needed is a smarter strategy. Try induction? Or frame this technique as fundamentally less visual
TODO:
Lemma 1 (compatible expansion): Given \(p+q+r=s \), there exists \(a_i,b_i,c_i,d_i, x_i,y_i,z_i,w_i \) such that \( \forall i, a_i \otimes x_i + b_i \otimes y_i + c_i \otimes z_i = d_i \otimes w_i \), and \( a_i \in A \) and so forth, and \( \sum_i a_i \otimes x_i = p\) and so forth
Lemma 2: An equation of the form \( a \otimes x + b \otimes y + c \otimes z = d \otimes w \) can only be of a few forms, all having colinear pieces except one where \(\text{span}\{a,b,c\} \) and \( \text{span}\{x,y,z\} \) are both 2-dimensional. Roughly speaking, each equation is a derivation part combined with a centroid part, except this last case which is combining two non-overlapping derivation parts.
Lemma 3 (compatible decomposition): It is possible to decompose each of the spaces U and V into pairwise intersection cases, 2-dimensional span cases, and the rest of the cases.
Lemma 4: After this splitting the nonzero cells of the compatible decomposition has a structured and predictable pattern that works with the compatible expansion.
Lemma 5: This compatible expansion pattern can be interpreted in context of the derivation algebra of the product of higher valence tensors in a general way.
For \(p+q=r\) equations, compatible decomposition leads to compatible expansion leads to factor-wise (local) constraints leads to local to global understanding of der. This fact is no longer true for equations of the form \( p+q+r = s \)
Attempts:
Assuming we can prove the existence of a compatible expansion for equations of the form \( p+q+r=s \), what can we say about translating this expansion into factor-wise constraints?