\( T \) is \( (a \times b \times c) \) grid of numbers
A multilinear interpretation: \[ \langle T \mid - \rangle: \mathbb{R}^a \times \mathbb{R}^b \times \mathbb{R}^c \rightarrowtail \mathbb{R}\] where
\[\left\langle T \; \left|\; \sum_i u_i e_i, \sum_j u_je_j, \sum_k u_ke_k \right.\right\rangle = \sum_{ijk} T_{ijk} u_iv_jw_k\]
Another interpretation: \( [T \mid -]: \mathbb{R}^a \times \mathbb{R}^b \rightarrowtail \mathbb{R}^c \)
Let \( A \) be a K-vector space with bilinear multiplication \( \mu: A \times A \rightarrowtail A \) (a \(K\)-algebra)
For ordered basis \( (e_1,\ldots, e_n )\) of \(A\), coordinatize \(\mu\) by a \( (n \times n \times n) \) grid of numbers \(T\) satisfying \( \mu(e_i,e_j) = \sum_k T_{ijk}e_k \).
For \(A = K[x]/(x^2+1) \), in the basis \( \{1,x\} \), we have
\[T_{\ast\ast 1} = \begin{bmatrix} 1 & 0 \\ 0 & -1\end{bmatrix}, T_{\ast\ast x} = \begin{bmatrix}0 & 1 \\ 1 & 0 \end{bmatrix}\]
\(\text{Users}\) = \( \mathbb{R}^{\{\text{Alice}, \text{Bob}, \text{Charlie}, \ldots \}} \)
\(\text{Time}\) = \(\mathbb{R}^{\{\text{Monday}, \text{Tuesday}, \ldots, \text{Sunday}\}} \)
\(\text{Words}\) = \( \mathbb{R}^{\{\text{Math}, \text{Sports}, \text{Movie}, \ldots\}} \)
\( T \) a grid storing number of occurences a user at a time used a word
\( \langle T |: \text{Users} \times \text{Time} \times \text{Words} \rightarrowtail \mathbb{R} \) can be data mined
Example: "weekend hockey group" cluster is a linear combination of Saturday, Sunday for the time axis and Chris & his hockey team in the "users" axis.
Source: Optimal Search Spaces for Tensor Problems, Figure 1.1
Myasnikov '90, Wilson '08 and others use the algebra, i.e
Theorem
Given \( *: U \times V \rightarrowtail W \)
$$\operatorname{Adj}(*) = \{(X,Y) \mid (\forall u,v)Xu*v = u*Yv\}$$
Exists \(\mathcal{E} = \{e_1,\ldots, e_n \} \subset \text{Adj}(*) \),
\( \sum_i e_i = 1\), and \(e_ie_j = e_i \) if \( i = j \), otherwise \(0\)
if and only if
Exists \(\perp\)-decomposition, \(U := \bigoplus_i U_i\) and \(V := \bigoplus_i V_i \),
\[ U_i * V_j = U_i*V_i \quad \text{if } i = j, \text{otherwise } 0 \]
Theorem (Brooksbank, Kassabov, Wilson '24)
For \( (u,v,w) \) eigenvectors of \( (X,Y,Z) \) in \( \text{Der}(*) \) with eigenvalues \( (\kappa , \lambda, \rho) \),
\[w^{\dagger}Z(u*v) = w^{\dagger}(Xu*v + u*Yv)\]
\[ w^{\dagger}(\rho c_w(u*v))-w^{\dagger}(\kappa u*v + u*\lambda v) = 0\]
By distributive property,
\[ (\rho c_w - \kappa - \lambda) (w^{\dagger}(u *v)) = 0 \]
Conclude either \( \kappa + \lambda - \rho = 0 \) or \( w^{\dagger}(u*v) = 0 \).
Tensor cluster patterns in eigenbasis in above picture
Source: Detecting cluster patterns in tensor data, Figure 3
Given \( *: U \times V \rightarrowtail W \)
$$\operatorname{Der}(*) = \{(X,Y,Z) \mid (\forall u,v) \; Z(u*v) = Xu*v + u*Yv \}$$
Product decomposition via algebra
Over \(K = \mathbb{F}_{13}\), let \(r: K^4 \times K^4 \rightarrowtail K^2 \) given by
T gives coordinates of \( K[x]/(x^2+8x+11) \cong \mathbb{F}_{13^2} \)
in \( \{ 3+4x, 7+10x \} \) basis
Centroid algebra detects \( r \) is \( \mathbb{F}_{13^2} \) bilinear
Hence \(r \) may be equal to \( s \otimes t \) for \(s : K^2 \times K^2 \rightarrowtail K \) and t multiplication in \( \mathbb{F}_{13^2} \). Indeed,
Pictured is bowtie tensor \(r: K^5 \times K^5 \rightarrowtail K^5 \), having \( 1 \) at entries at \( (1,2,3), (1,4,5) \) and all their permutations. All other entries are \( 0\).
1
2
3
4
5
No product decompositions?
It has no product decomposition. But why?
Tensor corresponding to hypergraph with hyperedges \( \{1,2,3\} \) and \( \{1,4,5\} \)
Efficient computation
Asymptotic improvement to complexity of solving for \( \text{Der}(*) \)
Target: \( O(n^6) \) to \( O(n^{4.5}) \) for \( \text{Der}(*) \) of cubic tensors
Tensor decomposition
Generalize existing tensor decompositions to products of tensors
Target: Computable characterizations of product indecomposability
(Joint with James B. Wilson, Joshua Maglione, "Simultaneous Sylvester System")
Given
Find
Such that
Interwoven striding in augmented matrix
> t := Random(KTensorSpace(GF(997), [20,20,20])); > Nucleus(t,1,2); Constructing a 800 by 8000 matrix over Finite field of size 997. Computing the nullspace of a 800 by 8000 matrix. Matrix Algebra of degree 40 with 1 generator over GF(997)
Dense system after clearing
X backsub
Y backsub
\( O(n^3) \) for QuickSylver. \( O(n^6) \) for flattened matrix to compute single solution
Let \(A,B,C,R,S \) vector spaces, with fixed isomorphisms to dual.
Given
\(r : \textcolor{blue}{R} \times B \times C \rightarrowtail K \),
\( s : A \times \textcolor{green}{S} \times C \rightarrowtail K \),
\( t : A \times B \times C \rightarrowtail K \)
Find
\( x : A \rightarrow \textcolor{blue}{R}, y : B \rightarrow \textcolor{green}{S} \) such that,
\[ r(x(a),b,c) + s(a,y(b),c) = t(a,b,c)\]
for all \( (a,b,c) \) in \( A \times B \times C \)
View \( r: R \rightarrow B \otimes C, s: S \rightarrow A \otimes C \) through isomorphisms to dual
Compute simultaneous sylvester equation restricted to \(A'\) and \( B' \)
Solve dense system
Backsubstitute for rest of solutions
Use left inverses to isolate unknown
Find \( A' \leq A, B' \leq B \) of small dimension that split monomorphisms
\( \tilde{r} : R \hookrightarrow B' \otimes C\) and \(\tilde{s} : S \hookrightarrow A' \otimes C \)
Goal: Asymptotic improvement from \( O(n^6) \) flattened linear system solution for \( \text{Der}(*) \)
\( \text{Der}(t) \) is nullspace of
> t := Random(KTensorSpace(GF(997), [20,20,20])); > DerivationAlgebra(t); Construting a 1200 by 8000 matrix over Finite field of size 997. Adding in possible fusion data. Computing the nullspace of a 1200 by 8000 matrix.
Let \(A,B,C,R,S, T \) vector spaces, with fixed isomorphisms to dual.
Given
\(r : \textcolor{blue}{R} \times B \times C \rightarrowtail K \),
\( s : A \times \textcolor{green}{S} \times C \rightarrowtail K \),
\( t : A \times B \times \textcolor{orange}{T} \rightarrowtail K \)
Find
\( x : A \rightarrow \textcolor{blue}{R}, y : B \rightarrow \textcolor{green}{S}, z : C \rightarrow \textcolor{orange}{T} \) such that
\[ r(x(a),b,c) + s(a,y(b),c) = t(a,b,z(c)) \]
for all \( (a,b,c) \) in \( A \times B \times C \)
Work to be done! Target \( O(n^{4.5}) \) by finding subspaces \(A',B',C'\) - prototype code gives promising results.
Let \( A, B \) be unital associative \( K \)-algebras
Observation: \( A \otimes B \) is a K-algebra, with multiplication
\[ (a \otimes b)(c \otimes d) = ac \otimes bd \]
Example: Kronecker product of matricies
Extend to their multiplication
For \( s: A \times A \rightarrowtail A\) and \(t: B \times B \rightarrowtail B \), define \( s \otimes t: (A \otimes B) \times (A \otimes B) \rightarrowtail (A \otimes B) \) as
\[ \langle s \otimes t \mid a \otimes b, c \otimes d \rangle = \langle s|a,c\rangle \otimes \langle t|b,d \rangle \]
For \( s: U \times V \rightarrowtail W \) and \(t: X \times Y \rightarrowtail Z \)
Construction is standard using natural isomorphism
\( (U \otimes V) \otimes (X \otimes Y) \cong (U \otimes X) \otimes (V \otimes Y) \) see Multilinear Algebra by Greub, Section 1.21
Define \( s \otimes t: (U \otimes X) \times (V \otimes Y) \rightarrowtail (W \otimes Z) \) as
\[ \langle s \otimes t | u\otimes x, v \otimes y \rangle = \langle s | u,v \rangle \otimes \langle t | x,y \rangle \]
Extend to bilinear maps
Let \( S \) and \(T \) be spaces of bilinear maps
Spaces of bilinear maps too
Define \( S \otimes T \) as space of bilinear maps spanned by \( \{s \otimes t | s \in S, t \in T \} \)
Let \(s: K^2 \times K \rightarrowtail K^2 \) and \( t: K \times K^3 \rightarrowtail K^3 \) both be bilinear maps corresponding to scaling vectors by \( K \)
Their product \( s \otimes t \) is a bilinear map from
\( (K^2 \otimes K) \times (K \otimes K^3)\) to \((K^2 \otimes K^3) \). Looks a lot like the outer product signature
Hence \( s \otimes t \cong r \), for \(r: K^2 \times K^3 \rightarrowtail K^6 \) the outer product tensor.
Example
Indeed,
Arbitrary valence
Let \( s: U_n \times \cdots \times U_1 \rightarrowtail U_0 \) and \( t: V_n \times \cdots \times V_1 \rightarrowtail V_0 \)
Define \( s \otimes t: (U_n \otimes V_n) \times \cdots \times (U_1 \otimes V_1) \rightarrowtail (U_0 \otimes V_0) \) as
\[ \langle s \otimes t|(u_i\otimes v_i)_{i=1}^{n} \rangle = \langle s| u_n,\ldots, u_1\rangle \otimes \langle t |v_n, \ldots, v_1\rangle \]
Differing valence tensors
Given \(s: K^2 \times K \rightarrowtail K^2 \), and \( t: K^3 \rightarrow K^3 \)
Define \( \tilde{t}: \textcolor{blue}{K} \times K^3 \rightarrowtail K^3 \) by
\[ \langle \tilde{t} | \textcolor{blue}{k}, u\rangle = \textcolor{blue}{k} \langle t | u\rangle \]
\( \tilde{t} \cong t\) by isomorphism \(K \otimes K^3 \cong K^3 \), so \( s \otimes t \) still sensible after "padding out" by \( K \).
Goals
Definition
Given \( r: U_n \times \cdots \times U_1 \rightarrowtail U_0 \), we say \(r\) has a Kronecker decomposition into a finite set \(\mathcal{S}\) if
\[ r \cong \bigotimes_{s \in \mathcal{S}}s \quad \text{for } s: V_{s,n} \times \cdots \times V_{s,1} \rightarrowtail V_{s,0} \]
r is Kronecker indecomposable if \( r \cong \bigotimes_{s \in \mathcal{S}}s \) implies \( \mathcal{S} \subset \{r, \mathbf{1} \}\), where \(\mathbf{1}: K \times \cdots \times K \rightarrowtail K \) is \(K\)-multiplication tensor.
Kronecker-decomposition
a = bc means \( \mathbb{M}_a(K) \cong \mathbb{M}_b(K) \otimes \mathbb{M}_c(K) \)
Hence
Example 1: Kronecker product of matricies
\( \langle r | E_{ij}, E_{kl} \rangle \)
\( \langle s | F_{\hat{\imath}, \hat{\jmath}}, F_{\hat{k},\hat{l}} \rangle \) \(\otimes \) \( \langle t | G_{\hat{\imath}, \hat{\jmath}}, G_{\hat{k}, \hat{l}} \rangle\)
\(\cong\)
\( \delta_{\hat{\jmath}\hat{k}}F_{\hat{\imath}\hat{l}} \) \(\otimes \) \( \delta_{\hat{\jmath}\hat{k}}G_{\hat{\imath}\hat{l}} \)
\(\delta_{jk}E_{il} \)
\(\cong\)
\(:\mathbb{M}_{b}(K) \times \mathbb{M}_{b}(K) \rightarrowtail \mathbb{M}_{b}(K) \)
\(s\)
\( :\mathbb{M}_{c}(K) \times \mathbb{M}_{c}(K) \rightarrowtail \mathbb{M}_{c}(K) \)
\(t\)
\(:\mathbb{M}_{a}(K) \times \mathbb{M}_{a}(K) \rightarrowtail \mathbb{M}_{a}(K) \)
\(r\)
\(\cong\)
\(\otimes\)
Example 2: Associative algebras
\( \mathbb{H} \otimes_{\mathbb{R}} \mathbb{C} \cong \mathbb{M}_2(\mathbb{C}) \)
\[ 1 \otimes 1 \mapsto \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}, i \otimes 1 \mapsto \begin{bmatrix}i & 0\\ 0 & -i\end{bmatrix}, j \otimes 1 \mapsto \begin{bmatrix}0 & 1\\-1 & 0\end{bmatrix}, k \otimes 1 \mapsto \begin{bmatrix}0 & i \\ i & 0\end{bmatrix}\]
\( u = i_{\mathbb{H}} \otimes i_{\mathbb{C}} \) satisfies \( u^2 = 1 \)
so the idempotent \(\frac{1+u}{2} \) splits the algebra
Now Kronecker-decomposing \( r: \mathbb{M}_{2}(\mathbb{C}) \times \mathbb{M}_{2}(\mathbb{C}) \rightarrowtail \mathbb{M}_{2}(\mathbb{C}) \) does not have a canonical choice. But Brauer Group classifies.
\( \mathbb{M}_2(\mathbb{R}) \otimes_{\mathbb{R}} \mathbb{C} \cong \mathbb{M}_2(\mathbb{C}) \)
\( [m_{ij}] \otimes c \mapsto [cm_{ij}] \)
Example 3: Away from associative algebras
Let \( K^3 \) spanned by \( \{ e,f,h \} \), and \( s: K^3 \times K^3 \rightarrowtail K^3 \) be the tensor given by
\[ \langle s | e,f \rangle = h \\ \langle s | e,h \rangle = -2e \\ \langle s | f,h \rangle = 2f \]
and \( \langle s | u,v \rangle = - \langle s | v,u \rangle \)
\( s \) is the multiplication tensor for Lie algebra \( \mathfrak{sl}_2 \) and will also feature shortly
Let \( r = s \otimes s \) be given as a bilinear map \( K^9 \times K^9 \rightarrowtail K^9 \) - how would we detect \(r\) as Kronecker decomposable?
Associative tools like \( \text{Adj}(t) \) do not help.
Definition [Derivation Closure] (First, Maglione, Wilson '20)
\( (| t |) = \{ s: U_n \times \cdots \times U_1 \rightarrowtail U_0 \mid \operatorname{Der}(t) \subseteq \operatorname{Der}(s) \} \)
\({}^1\) Pun maybe intended
Theorem
\( (| s \otimes t |) = (| s |) \otimes (| t |) \) as spaces of multilinear maps
Corollary
If \( \operatorname{dim} (| s |) = 1 \), then \( (| s \otimes t |) = (| s |) \otimes (| t |) \cong (| t |) \)
Using Corollary to decide isomorphism
Let \(s: K^3 \times K^3 \rightarrowtail K^3 \) be the \( \mathfrak{sl}_2 \) multiplication tensor.
Fact: \( \text{dim}(| s |) = 1 \)
By Theorem 1.4 of Tensor Isomorphism by Conjugacy of Lie Algebras, can decide isomorphism \( s^{\otimes d} \cong r \) in polynomial time.
Let \( r: K^{3d} \times K^{3d} \rightarrowtail K^{3d} \) be any tensor.
By Theorem, \( \text{dim} (| s^{\otimes d}|) = 1 \)
Bowtie tensor is indecomposable?
A decomposition \( r = s \otimes t\) must satisfy
\[ 4 = \text{dim}(|r|) = \text{dim}(|s|)\text{dim}(|t|) \]
Recall the bowtie tensor \( r: K^5 \times K^5 \rightarrowtail K^5 \) has entry \(1 \) at \((1,2,3)\), \((1,4,5)\), and all its permutations
Fact: \( \text{dim}(| r |) = 4 \)
Observation
Any bilinear map \(M: K^a \times K^b \rightarrowtail K \) has \(\text{dim} (|M|) = 1 \)
Proof sketch at bottom of this column of slides
If \(r = s \otimes t\), because \(5\) is prime, both \(s\) and \(t\) must be
\( K^a \times K^b \rightarrowtail K \) after shuffling axes so \( \text{dim}(|s |) = \text{dim}(| t |) = 1 \).
Not possible so \(r \) is Kronecker indecomposable
Definition [\( (P,\Omega) \)-product] (First, Maglione, Wilson, '20):
Let \( U_n, \ldots, U_1 \) be vector spaces, \( P \subset K[x_n,\ldots, x_1] \), \( \Omega \subset \prod_i \operatorname{End}(U_i) \)
Define the subspace of \( U_n \otimes \cdots \otimes U_1 \),
\[\Xi(P, \Omega) = \left\langle \sum_e \lambda_e \omega_1^{e_1}u_1 \otimes \cdots \otimes \omega_n^{e_n} u_n \;\left|\; \sum_e X^e \in P, \omega \in \Omega \right. \right\rangle\]
The \( (P,\Omega) \)-tensor product of spaces \( U_n, \ldots, U_1 \) is the vector space \( (| U_n, \ldots, U_1 |)^{P}_{\Omega} = U_n \otimes \cdots \otimes U_1 / \Xi(P,\Omega) \)
Other products
Example: Given \( t: U_2 \times U_1 \rightarrowtail U_0 \)
\(\Xi(x_2-x_1,\text{Adj}(t)) \) = \( \langle X u_2 \otimes u_1 - u_2 \otimes Y u_1 \mid (X,Y) \in \text{Adj}(t) \rangle \),
\[ (|U_2,U_1|)^{x_2-x_1}_{\text{Adj}(t)} = U_2 \otimes_{\text{Adj}(t)} U_1\]
\((P,\Omega)\)-products are the starting point for non-Kronecker decompositions of tensors.
\( \text{Der}(\text{bowtie}) = \mathfrak{sl}_2 \oplus \mathfrak{sl}_2\).
Does there exists a \((P,\Omega)\) for which bowtie is \((P,\Omega)\)-decomposable?
1
2
3
4
5
Observation
Any bilinear map \(M: K^a \times K^b \rightarrowtail K \) has \(\text{dim} (|M|) = 1 \)
Proof sketch
All of the following triples \((X,Y,z)\) are in \( \text{Der}(M) \)
\[X = \begin{bmatrix} \text{diag}(\lambda)_r & * \\ 0 & *\end{bmatrix} \quad Y = \begin{bmatrix}\text{diag}(\mu)_r & 0 \\ * & *\end{bmatrix} \quad z = \lambda + \mu\]
Write M in reduced row/column echelon basis \( M = \begin{bmatrix} I_r & 0_{r\times b-r} \\ 0_{a-r \times r} & 0_{a-r \times b-r} \end{bmatrix} \).
If \( N \neq kM \), there is some \( (X,Y,z) \) in \(\text{Der}(M)\) not satisfying \( XN + NY = zN\).
Hence \((X,Y,Z) \) is not in \( \text{Der}(N)\)
TODOS:
TODOS May 1
Clearing and backsubstitution algorithm translates to finding \( A' \leq A, B' \leq B \) such that \[ (\pi_{A'} \otimes I_C) \circ r \] and \[ (\pi_{B'} \otimes I_C) \circ s \] have left inverses
Given 3 bilinear maps \[ r: U_2 \times U_1 \rightarrowtail U_0 \\ s: V_2 \times V_1 \rightarrowtail V_0 \\ t: W_2 \times W_1 \rightarrowtail W_0 \]
Place \( r,s,t \) in spaces of bilinear maps \( U,V,W \), respectively.
Fix some \( P \subset K[x,y,z]\), \(\Omega \subset \text{End}(U) \times \text{End}(V) \times \text{End}(W) \)
In addition to \( r \otimes s \otimes t \), the \( (P,\Omega) \)-product \( (| U,V,W |)^{P}_{\Omega} \) is another mechanism to combine tensors \(r,s,t\) as \( (|r,s,t|) \).
Definition: (Outer action)
Let \( t \in K^{a \times b \times d} \) given as \( [t_1,\ldots, t_d] \), each an \( a \times b \) matrix, let \( Z \in \mathbb{M}_{d\times c}(K) \)
The outer action of Z on t is \( t^Z \in K^{a \times b \times c} \) given as \( [(t^Z)_1, \ldots, (t^Z)_c] \), where \( (t^Z)_j = \sum_i t_i Z_ij \)
Given
Find
Such that
Theorem (Brooksbank, Maglione, Wilson '21)
1. There are an infinite family of tensors t with \( \text{dim} (| t |) = 1 \)
2. Given \( s, t: U \times V \rightarrowtail W \) with \( \text{dim} (| s |) = 1 \) and \( \text{dim} (| t |) = 1 \), over big enough fields,
Deciding \( s \cong t \) is polynomial in \( \text{dim}(U + V +W) \)
\( (| * |) = \{ s: U \times V \rightarrowtail W \mid \operatorname{Der}(*) \subseteq \operatorname{Der}(s) \} \)
\( \langle t |: U_3 \times U_2 \times U_1 \rightarrowtail U_0 \)
\( \operatorname{Nuc}_{32}(t) = \{ (X,Y) \mid \langle t|Xu_3, u_2, u_1 \rangle = \langle t | u_3, Yu_2, u_1 \rangle \)
\( \operatorname{Der}_{321}(t) = \{ (X,Y,Z) \mid \langle t|Xu_3, u_2, u_1 \rangle + \langle t | u_3, u_2, Yu_1 \rangle = \langle t | u_3, u_2, Zu_1 \rangle \)
\( (| \cdots |): U_n \times \cdots U_1 \rightarrowtail (| U_n,\ldots,U_1 |)^{P}_{\Omega} \)
where
\( (| u_1,\ldots, u_n |) := u_1 \otimes \cdots \otimes u_n + \Xi(P,\Omega) \)