Jesús Martínez Blanco
Data Scientist
Python
git pull
Jake Vanderplas
Visit also Anaconda's PyViz.org
Article elaborating on the diagram above
Pretty much any chart type is possible in Plotly.
RESOURCES:
A Canadian company building products around data analytics and visualisation tools:
They make money hosting your plots privately (Chart-Studio) and providing consulting and training services.
Website: https://plot.ly
Disclaimer: I do not hold any professional or commercial relationship with Plotly
Video: How Does Income Relate to Life Expectancy? (The Gapminder Foundation)
Apart from their paid products, they have open sourced their plotting libraries:
They are free to use and are fully functional OFFLINE
(no need to use their servers).
Contains D3.js
Write Python code and get interactive plots rendered in the browser.
You'll need (see Getting Started with Plotly in Python):
pip install plotly kaleido nbformat
Bookmark these (docs):
for static image export
If you have Docker, navigate in the terminal to the directory with your notebooks and execute this:
docker run --rm -it -p 1789:8888 -v $PWD:/home/jovyan/HOST chumo/plotly_course
run : executes the Docker image chumo/plotly_course.
If you don't have it in your local machine,
it will be downloaded automatically from DockerHub.
--rm : to remove the Docker container after
finishing the Jupyter notebook server with CTRL+c.
-it : to be able to stop the JupyterLab server running on the container.
-p : to map the port 8888 internal to the running container
(where the notebook is running) to the port 1789 outside the container.
-v : to mount a local directory into the
directory /home/jovyan/HOST inside the container.
... and then see the Jupyter Notebook at http://localhost:1789
use any available port
In JupyterLab you may need the jupyterlab-plotly extension and change the default renderer:
import plotly.io as pio
pio.renderers.default = 'jupyterlab'
# Import the library
import plotly as py
# Import the Plotly building blocks
import plotly.graph_objects as go
A Plotly figure is built upon objects from plotly.graph_objects
and Python dictionaries and lists.
Examples of such objects are:
go.Scatter(x=X, y=Y)
go.Bar(x=X, y=Y)
go.Histogram(x=X)
go.Layout(title='My Title')
It is possible to use Python dictionaries instead:
dict(type='scatter', x=X, y=Y)
dict(type='bar', x=X, y=Y)
dict(type='histogram', x=X)
dict(title='My Title')
# Display the result in the notebook with...
fig.show()
import numpy as np
x = np.linspace(0, 2*np.pi)
# Traces
trace0 = dict(type='scatter', x=x, y=np.sin(x))
trace1 = dict(type='scatter', x=x, y=np.cos(x))
# Figure
fig = go.Figure(data=[trace0, trace1])
import numpy as np
x = np.linspace(0, 2*np.pi)
# Traces
trace0 = dict(type='scatter', x=x, y=np.sin(x), name='sin(x)')
trace1 = dict(type='scatter', x=x, y=np.cos(x), name='cos(x)')
# Layout
layout = dict(
title='SIN and COS functions',
xaxis=dict(title='x'),
yaxis=dict(title='f(x)'),
)
# Figure
fig = go.Figure(data=[trace0, trace1], layout=layout)
# syntactic sugar
xaxis_title='x',
yaxis_title='f(x)',
# For example, remove the Plotly logo for a cleaner layout,
# and make texts editable:
fig.show(
config=dict(
displaylogo=False,
editable=True,
),
)
You can set a configuration to alter how the plot is displayed (see configuration options)
Reproduce this:
Reproduce this:
# Contrary to what we saw so far,
# the figure object with subplots is defined beforehand:
from plotly.subplots import make_subplots
fig = make_subplots(
rows=1,
cols=2,
subplot_titles=('f(x) = sin(x)', 'f(x) = cos(x)'),
shared_yaxes=True,
)
# Once the figure object has been created,
# we can concatenate .add_ methods (to add specific traces)
# or the .update_ methods (to update existing features):
(
fig
.add_scatter(...)
.add_histogram(...)
.add_box(...)
.add_bar(...)
.update_xaxes(...)
.update_yaxes(...)
.update_layout(...)
.update_traces(...)
)
It accepts a selector parameter as well
They accept a row and col parameters
vertical_spacing
subplot_titles
shared_xaxes
Reproduce this:
hints
# Display it in the notebook
fig.show() or fig.show(renderer='png')
# Export it as static image (done by KALEIDO under the hood)
fig.write_image(file='sin_cos.png', width=700, height=500)
# Create a stand-alone html file
fig.write_html(file='sin_cos.html', include_plotlyjs='cdn')
# Share it via the Plotly cloud platform (CHART STUDIO)
# or just a <div> element with the plot to embed in your web page
fig.write_html(file='mydiv.html', include_plotlyjs=False, full_html=False)
# Introspect its dictionary representation
fig.to_dict()
fig.full_figure_for_development(as_dict=True) # includes defaults too
They accept a config parameter
use .to_html to get the raw string
# Generate the HTML code of the plot in a <div> element:
fig.write_html(
file='mydiv.html',
include_plotlyjs=False,
config=dict(displaylogo=False),
full_html=False,
)
# Then you can use the resulting string in your own HTML code:
with open('mydiv.html', 'r') as f:
div_str = f.read()
html_str = f'''
<!DOCTYPE html>
<html>
<head>
<script src='https://cdn.plot.ly/plotly-latest.min.js'></script>
</head>
<body>
<h1>Simple Dashboard</h1>
<p>The following plot is static and interactive at the same time ;)</p>
{div_str}
</body>
</html>
'''
# The final string can be saved in a file
with open('simple_dashboard.html', 'w') as f:
f.write(html_str)
fig.write_html()
Create a repo in your GitHub called, say, SharedPlots.
1.
Upload any .html file created with Plotly to this repository:
2.
Commit your changes to the repository:
3.
Click on the "Settings" tab, go to menu "Pages", and set the "main" branch to be served. Press "Save"
4.
Your visualisation is automatically served under the URL:
5.
https://<USERNAME>.github.io/<REPOSITORY>/<FILENAME>.html
Ta-dá !!!
where USERNAME is your GitHub username
and FILENAME is the html file that was added to the repo
NOTE 2: it may take a few minutes to be available online.
NOTE 1: if you don't specify <FILENAME>.html, GitHub Pages is trying to serve index.html or README.md by default.
Check:
What is Plotly Express?
From version 4.8, no longer a requirement!
See this post
image credit: this post
import plotly.express as px
px.scatter(
data_frame= gapminder[gapminder.year.isin([1952, 2007])],
x= 'gdpPercap',
y= 'lifeExp',
log_x = True,
color= 'continent',
size= 'pop',
size_max= 60,
facet_col='year',
width= 800,
height= 500,
title= 'Life Expectancy vs. GDP per capita',
)
data
aesthetics
geometries
geometries
facets
coordinates
themes
The result:
Tidy Data according to Hadley Wickham: (original paper)
messy (wide-form)
tidy (long-form)
tidy = messy.melt(
id_vars=['patient'],
value_vars=['Treatment A', 'Treatment B'],
var_name='Treatment',
value_name='Result',
)
Since Pandas 0.25 it is possible to provide any backend for the .plot plotting API.
Plotly backend (see here) can be set with:
import pandas as pd
pd.options.plotting.backend = 'plotly'
Then you can pass plotly.express parameters to the .plot method of pandas, and get a Plotly figure out of it:
df.plot(
x='columnA',
y='columnB',
log_x=True,
)
Reproduce this:
After the figure has been created, you can hide the legend with:
.update_layout(showlegend=False)
Reproduce this:
Reproduce these:
locations
points
pip install plotly dash gunicorn
required for deployment with Heroku
nice mini tutorial: https://youtu.be/pLU7ZLPhyX8?si=Vvpr_ZERjRW8Hn6i
minimal DASH app
import pandas as pd
import numpy as np
import plotly.express as px
from dash import Dash, callback, html, dcc, Input, Output
external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']
app = Dash(__name__, external_stylesheets=external_stylesheets)
server = app.server
# Some example data and its corresponding Plotly figure
df = pd.DataFrame(np.random.rand(10,2), columns=['A', 'B'])
fig = px.scatter(df, x='A', y='B')
# Structure of my page
app.layout = html.Div([
html.H1('A simple dashboard'),
html.Button('Generate Random Data', id='randomize', n_clicks=0),
html.Div(id='display-value'),
dcc.Graph(id="myGraph", figure=fig),
])
@callback(
Output(component_id='display-value', component_property='children'),
Output(component_id='myGraph', component_property='figure'),
Input(component_id='randomize', component_property='n_clicks'),
)
def do_something(n_clicks):
# Regenerate the figure
df = pd.DataFrame(np.random.rand(10,2), columns=['A', 'B'])
fig = px.scatter(df, x='A', y='B')
return [
f'You have clicked {n_clicks} times',
fig,
]
if __name__ == '__main__':
app.run_server(debug=True)
see deployment with Heroku for details
heroku create dsr-test # feel free to use any other name
git add . # add all files to git
git commit -m 'Initial app boilerplate'
git push heroku master # deploy code to heroku
heroku ps:scale web=1 # run the app with a 1 heroku "dyno"
app.py (with the dash code, including ) requirements.txt (gunicorn should be included) Procfile (with the line ) .gitignore (with files to ignore in Git)
web: gunicorn app:server
heroku logs --tail
server = app.server