Iván Castro, Cristóbal Silva and Felipe Tobar
IEEE-DSP XII August 2017
Linearly distributed data
Non linearly distributed data
Probabilistic Model
$$p(Y) = \prod_{i=d}^{N} \frac{1}{2\pi\sigma_{\epsilon}^2} \exp \left( \frac{\left(y - {\alpha}^{\texttt{T}} K_{\sigma_k}\left(x_i, \mathcal{D}\right)\right)^2}{2\sigma_{\epsilon}^2} \right)$$
Model Likelihood
Weights prior
$$p(\alpha) = \frac{1}{\sqrt{2\pi l_{\alpha}^2}} \exp \left( - \frac{\left\| \alpha \right\|^2}{2 l_{\alpha}^2} \right) $$
Sparsity Inducing Prior
$$ p(\mathcal{D}) = \frac{1}{\sqrt{2\pi l_{\mathcal{D}}^2}} \exp \left( - \frac{\left\| K_{\sigma}(\mathcal{D}, \mathcal{D}) \right\|^2}{2 l_{\mathcal{D}}^2} \right)$$
$$ y_i = \sum_{j=1}^{N_i} \alpha_{j} K_{\sigma_k}(i, j) + \epsilon_i $$
\( x[i + 1] = x[i] + dt(\alpha(y[i] - x[i])) \)
\( y[i + 1] = y[i] + dt(x[i](\rho - z[i]) - y[i]) \)
\( z[i + 1] = z[i] + dt(x[i]y[i] - \beta z[i]) \)
[1] W. Liu, P. Pokharel, and J. Principe, “The kernel least-mean-square algorithm,” IEEE Trans. on Signal Process., vol. 56, no. 2, pp. 543–554, 2008.
[2] C. Richard, J. Bermudez, and P. Honeine, “Online prediction of time series data with kernels,” IEEE Trans. on Signal Process., vol. 57, no. 3, pp. 1058 –1067, 2009.