PyMKS Tutorial

Daniel Wheeler

My Background

  • Computer Scientist at NIST
  • Using Python since 2002
  • Using/developing scientific software since 1995
  • Dabble in machine learning ~4 years
  • Software Carpentry instructor

PyMKS

  • Materials Knowledge System
  • Written in Python
  • Provides machine learning techniques unavailable in other machine learning libraries
  • Started in 2013
  • 17 contributors

How does this work?

  • What will we learn?
  • Live coding

  • Python?

  • Installation

    • Install on your laptop

    • Use Matin

    • Use Binder

  • Please stop me if I go too fast

  • Feel free to ask questions

What will we learn?

Classify Microstructures

Metamodel

n \Delta t

model

metamodel

Homogenization

Localization

Microstructure

Response

1% displacement

Channel 1

Channel 2

Channel 3

Microstructure Function

Microstructure Function

 

 

  • Account for the stochastic nature of the local state
  • Unified representation of the microstructure
  • Create different mappings for different states

2-Point Statistics

Samples v Features

\begin{pmatrix} \begin{matrix} m_{11} & m_{12} & \cdots & \cdots & \cdots & m_{1n} \\ m_{21} & m_{22} & \cdots & \cdots & \cdots & m_{2n} \\ \vdots & \vdots & \ddots & & & \vdots \\ \vdots & \vdots & & \ddots & & \vdots \\ \vdots & \vdots & & & \ddots & \vdots \\ m_{l1} & m_{l2} & \cdots & \cdots & \cdots & m_{ln} \end{matrix} \end{pmatrix}
\begin{pmatrix} \begin{matrix} r_{1} \\ r_{2} \\ \vdots \\ \vdots \\ \vdots \\ r_{l} \end{matrix} \end{pmatrix}

Samples

Features

Microstructure

Response

Make New Features

\begin{pmatrix} \begin{matrix} m_{11} & m_{12} & \cdots & \cdots & \cdots & m_{1n} \\ m_{21} & m_{22} & \cdots & \cdots & \cdots & m_{2n} \\ \vdots & \vdots & \ddots & & & \vdots \\ \vdots & \vdots & & \ddots & & \vdots \\ \vdots & \vdots & & & \ddots & \vdots \\ m_{l1} & m_{l2} & \cdots & \cdots & \cdots & m_{ln} \end{matrix} \end{pmatrix}

New features

n \gg l

Dimensionality Reduction

\begin{pmatrix} \begin{matrix} m_{11} & m_{12} & \cdots & \cdots & \cdots & m_{1n} \\ m_{21} & m_{22} & \cdots & \cdots & \cdots & m_{2n} \\ \vdots & \vdots & \ddots & & & \vdots \\ \vdots & \vdots & & \ddots & & \vdots \\ \vdots & \vdots & & & \ddots & \vdots \\ m_{l1} & m_{l2} & \cdots & \cdots & \cdots & m_{ln} \end{matrix} \end{pmatrix}

Reduce features

l \gg n
n \gg l

Learning

\begin{pmatrix} \begin{matrix} m_{11} & m_{12} & \cdots & \cdots & \cdots & m_{1n} \\ m_{21} & m_{22} & \cdots & \cdots & \cdots & m_{2n} \\ \vdots & \vdots & \ddots & & & \vdots \\ \vdots & \vdots & & \ddots & & \vdots \\ \vdots & \vdots & & & \ddots & \vdots \\ m_{l1} & m_{l2} & \cdots & \cdots & \cdots & m_{ln} \end{matrix} \end{pmatrix}
l \gg n
\begin{pmatrix} \begin{matrix} r_{1} \\ r_{2} \\ \vdots \\ \vdots \\ \vdots \\ r_{l} \end{matrix} \end{pmatrix}

Microstructure

Response

Microstructure

s = [0, 0]
s = [1, 0]
s = [2, 0]
s = [2, 1]
s = [1, 1]
s = [0, 1]
s = [0, 2]
s = [1, 2]
s = [2, 2]
\phi_k(\vec{s})

continuous:

discrete:

\phi_k[[i, j]]
\phi_k[[0, 0]] = 0
\phi_k[[0, 2]] = 1

categorical data

Microstructure

s = [0, 0]
s = [1, 0]
s = [2, 0]
s = [2, 1]
s = [1, 1]
s = [0, 1]
s = [0, 2]
s = [1, 2]
s = [2, 2]
\phi_k[[0, 1]] = 0.9
\phi_k[[0, 2]] = 0.1

continuous data

Microstructure Function

\phi_k(\vec{s})
m_k(h; \vec{s})
\phi_k(\vec{s}) = \int_H h \; m_k(h; \vec{s}) \; dh
\int_H m_k(h; \vec{s}) \; dh = 1
m_k(h; \vec{s}) = \delta(h - \phi_k(\vec{s}))

Microstructure Function

\phi_k[s]
m_k[h; s]
m_k[h; s] = \delta[h - \phi_k[s]]
\delta [x] = \max \left( 1 - \left|\frac{x}{\Delta h}\right|, 0 \right)

Microstructure Function

s = [0, 0]
s = [1, 0]
s = [2, 0]
s = [2, 1]
s = [1, 1]
s = [0, 1]
s = [0, 2]
s = [1, 2]
s = [2, 2]
\phi_0[[0, 2]] = 1 \;\;\; m_0[0; [0, 2]] = 0
\phi_0[[0, 2]] = 1 \;\;\; m_0[1; [0, 2]] = 1
\phi_0[[0, 0]] = 0 \;\;\; m_0[0; [0, 0]] = 1
\phi_0[[0, 0]] = 0 \;\;\; m_0[1; [0, 0]] = 0

2-Point Stats

s = [0, 0]
s = [1, 0]
s = [2, 0]
s = [2, 1]
s = [1, 1]
s = [0, 1]
s = [0, 2]
s = [1, 2]
s = [2, 2]
f_k[h, h';r] = \frac{1}{\Omega_j[s]} \sum_{s \in S} m_k[h; s] m_k[h'; s + r]
f_0[0, 0; [0, 0]] = 5 / 9
f_0[1, 1; [0, 0]] = 4 / 9
f_0[0, 1; [0, 0]] = 0 / 9
f_0[1, 0; [2, -1]] = 3 / 9
f_0[1, 1; [2, -1]] = 1 / 9
Made with Slides.com