Daniel Yukimura
Contibutions:
Wasserstein distance
Prop. 1: Let \(\mu\) be a prob. on \([-1,1]^d\). If \(\mu_n\) is the assoc. empirical measure, then for any \(p\in [1,\infty]\)
low dim.
Question: Given \(n\) i.i.d. observations from both \(\mu^{(1)}\) and \(\mu^{(2)}\) is it possible to estimate \(W_p(\mu^{(1)}, \mu^{(2)})\) at a rate faster than \(n^{-1/d}\)?
A prob. meas. \(\mu\) on \(\mathbb{R}^d\) satisfy the \(T_p(\sigma^2)\) transport inequality if
Def.: For \(k\in [d]\), the \(k\)-dimensional Wasserstein distance between \(\mu^{(1)}\) and \(\mu^{(2)}\) is
WPP estimator
Theorem 1: Let \( (\mu^{(1)}, \mu^{(2)}) \) sats. the Spiked Transport Model (STM). For any \(p\in[1,2]\), if \( \mu^{(1)}\) and \(\mu^{(2)}\) sats. the \(T_p(\sigma^2)\) ineq., then
Prop. 3: Under the STM
Thm. 6: Let \(p\in [1,2]\). A meas. \(\mu\in \mathcal{P}_p(\mathbb{R}^d)\) (prob. with finite pth moment) satisfies \(T_p(\sigma^2)\) if and only if the r.v. \(W_p(\mu_n, \mu)\) is \(\sigma^2/n\)-subgaussian for all \(n\).
Prop. 5: Let \(U\in \mathcal{V}_k(\mathbb{R}^d)\). For any \(p\in[1,2]\) and \(\sigma>0\), if \(\mu\) satisfies \(T_p(\sigma^2)\), then so does \(\mu_U\).
First notice that
\[\mathbb{E} \left| \widehat W_{p,k} - W_p(\mu^{(1)}, \mu^{(2)}) \right| \leq \mathbb{E} \tilde W_{p,k} (\mu^{(1)}, \mu^{(1)}_n) + \mathbb{E} \tilde W_{p,k} (\mu^{(2)}, \mu^{(2)}_n)\]
Then we can focus on bounding \(\mathbb{E} \tilde W_{p,k} (\mu, \mu_n)\).
Lemma: \(\exists\) r.v. \(L\) s.t. for all \(U,V\in \mathcal{V}_k(\mathbb{R}^d)\)
\[|Z_U - Z_V| \leq L\|U-V\|_{op}\]
and \(\mathbb{E} L \lesssim \sqrt{dp}\)
Lemma: \(\exists\) r.v. \(L\) s.t. for all \(U,V\in \mathcal{V}_k(\mathbb{R}^d)\)
\[|Z_U - Z_V| \leq L\|U-V\|_{op}\]
and \(\mathbb{E} L \lesssim \sqrt{dp}\)
proof: Let \(X\sim \mu\), then
Now, using a standard \(\varepsilon\)-net argument on our estimation over \(\mathcal{V}_k(\mathbb{R}^d)\) we get
Where \(\mathcal{N}(\mathcal{V}_k, \varepsilon, \|\cdot\|_{op})\) is the covering number of \(\mathcal{V}_k\) with resp. to the op. norm.
There exist a univ. const. \(c\) such that \(\mathcal{N}(\mathcal{V}_k, \varepsilon, \|\cdot\|_{op}) \leq dk \log{\frac{c\sqrt{k}}{\varepsilon}}\) for \(\varepsilon\in (0,1]\). Choosing \(\varepsilon = \sqrt{k/n}\) yelds
Finally we get,
Theorem 10: Let \(p\in [1,2]\). Assume \( (\mu^{(1)}, \mu^{(2)}) \) sats. STM and the \(T_p(\sigma^2)\) ineq. Let \(\hat \mathcal{U} := \text{span}(\hat U)\), where
Then
Consider a compact metric space \(\mathcal{X}\) s.t.
\[c \varepsilon^{-d} \leq \mathcal{N}(\mathcal{X}, \varepsilon) \leq C \varepsilon^{-d}\]
for all \(\varepsilon \leq \text{diam}(\mathcal{X})\).
With \(\mathcal{P} = \text{Prob}(\mathcal{\mathcal{X}})\) define
\[R(n, \mathcal{P}) := \underset{\hat W}{\inf}\underset{\mu, \nu\in\mathcal{P}}{\sup} \mathbb{E}_{\mu, \nu}|\hat W - W_p(\mu,\nu)|.\]
Theorem 11: Let \(d>2p>2\) and \(\mathcal{X}\) with the cov. number as before. Then
\[R(n,\mathcal{P}) \geq C_{d,p} (d \log{n})^{-1/d}\]
\[\mathbb{E}|\hat W - W_p(\mu^{(1)},\mu^{(2)})| \gtrsim \sigma \sqrt{\frac{d}{n}}\]
Theorem 4:
Prop. 9: Assume \(d>2p>2\) and let \(m\) be a pos. integer. Let \(u=\text{Unif}([m])\). \(\exists\) a random function \(F:[m]\rightarrow \mathcal{X}\) s.t. for any dist. \(q\) on \([m]\),
with prob. at least \(.9\)
proof: For the lower bound:
Use the cov. num. to get a set of points \(G_m = \{x_i\}_{i\in[m]}\) s.t. \(d(x_i, x_j) \gtrsim m^{-1/d}\). Then select \(F\) unif. at random from the set of bijections from \([m]\) to \(G_m\). Now, since
\[d(x,y)^p \gtrsim m^{-p/d} \boldsymbol{1}\{x\neq y\}\]
we can com get for any coupling \(\pi\) of \(F_\#q\) and \(F_\#u\)
\[\int d(x,y)^p d\pi(x,y) \gtrsim m^{-p/d}\mathbb{P}[X\neq Y]\geq m^{-p/d} d_{TV}(q, u)\]
For the upper bound: ...
Prop. 10: Fix \(n\in\mathbb{N}\) and a cnt. \(\delta\in [0, .1]\). Given \(m\in\mathbb{N}\), let \(D_m\) be the set of prob. \(q\) in \([m]\) sats. \(\chi^2(q, u)\leq 9\). Denote by \(D_{m,\delta}^-\) the subset of \(D_m\) where \(d_{TV}(q,u)\leq \delta\) and by \(D_m^+\) the subset sats. \(d_{TV}(q,u)\geq 1/4\). If \(m = \lceil C\delta^{-1}n\log{n} \rceil\) for a sufficiently large univ. \(C\) and \(n\) is sufficiently large, then
\[\underset{\psi}{\inf} \left\{ \underset{q\in D_m^+}{\sup} \mathbb{P}_q [\psi=1] + \underset{q\in D_{m,\delta}^-}{\sup} \mathbb{P}_q [\psi=0] \right\} \geq .9 \]
where the \(\inf\) is taken over all test based on \(n\) samples.
Proof of Thm. 11:
Let \(A = \{|\hat W - W_p(F_\#q, F_\#u)|\geq \Delta_d\}\), with \(\Delta_d = \frac{1}{16} c^* m^{-1/d} \). Then
We def. the rand. test
\[\psi(X_1,\dots,X_n) := \boldsymbol{1}\{\hat W(F(X_1),\dots,F(X_n); F(Y_1),\dots,F(Y_n)) \leq 2\Delta_d\}\]
Choosing \(m = \lceil C\delta^{-1}n\log{n} \rceil\) for suff. large C and apply prop. 10 gives \(\underset{\mu, \nu\in\mathcal{P}}{\sup} \mathbb{P}_{\mu, \nu}\left[|\hat W - W_p(\mu,\nu)|\geq \Delta_d\right] \geq .8\), and Markov's ineq. yields the claim.
Def. 5: Given a dist. \(\mathcal{D}\) on \(\mathbb{R}^d\), for any sample size \(t>0\) and \(f:\mathbb{R}^d\rightarrow [0,1]\), the oracle \(\text{VSTAT}(t)\) returns a value \(v\in [p-\tau, p+\tau]\), where \(p = \mathbb{E}f(X)\) and \(\tau = \frac{1}{t}\vee \sqrt{\frac{p(1-p)}{t}}\)
Theorem 12: There exists a pos. univ. constant \(c\) s.t., for any \(d\), estimating \(W_1(\mu^{(1)}, \mu^{(2)})\) for \(\mu^{(1)}\), \(\mu^{(2)}\) sats. the STM with \(k=1\) to accuracy \(\Theta(1/\sqrt{d})\) with prob. at least \(2/3\) requires at least \(2^{cd}\) queries to \(\text{VSTAT}(2^{cd})\).