| Hyperparameter | Values |
|---|---|
| Cyclic Scheduler | Yes |
| Added Noise | Yes |
| Linear | Yes |
| Kernel size | 5 |
| Number of layers (time steps) | 3 |
| Number neptune run | 639 |
| Hyperparameter | Values |
|---|---|
| Cyclic Scheduler | Yes |
| Added Noise | Yes |
| Linear | No (but all trainable weights) |
| Kernel size | 5 |
| Number of layers (time steps) | 3 |
| Number neptune run | 640 |
| Hyperparameter | Values |
|---|---|
| Cyclic Scheduler | Yes |
| Added Noise | Yes |
| Linear | No (last layer not trainable) |
| Kernel size | 5 |
| Number of layers (time steps) | 3 |
| Number neptune run | 641 |
| Hyperparameter | Values |
|---|---|
| Cyclic Scheduler | Yes |
| Added Noise | No |
| Linear | No (all trainable parameters) |
| Kernel size | 5 |
| Number of layers (time steps) | 3 |
| Number neptune run | 655 |
| Hyperparameter | Values |
|---|---|
| Cyclic Scheduler | Yes |
| Added Noise | No |
| Linear | No (last layer fixed) |
| Kernel size | 5 |
| Number of layers (time steps) | 3 |
| Number neptune run | 658 |
| Hyperparameter | Values |
|---|---|
| Cyclic Scheduler | Yes |
| Added Noise | No |
| Linear | No (all trainable) |
| Kernel size | 5 |
| Number of layers (time steps) | 3 |
| Number neptune run | 663 |
| Hyperparameter | Values |
|---|---|
| Cyclic Scheduler | Yes |
| Added Noise | Yes |
| Linear | No (all trainable) |
| Kernel size | 5 |
| Number of layers (time steps) | 3 |
| Number neptune run | 666 |
| Hyperparameter | Values |
|---|---|
| Cyclic Scheduler | Yes |
| Added Noise | Yes |
| Linear | No (all trainable) |
| Kernel size | 5 |
| Number of layers (time steps) | 3 |
| Number neptune run | 677 |
| Zero sum CNN filters | Yes |
| Hyperparameter | Values |
|---|---|
| Cyclic Scheduler | Yes |
| Added Noise | Yes |
| Linear | No (all trainable) |
| Kernel size | 5 |
| Number of layers (time steps) | 3 |
| Number neptune run | 678 |
| Zero sum CNN filters | No |
| Hyperparameter | Values |
|---|---|
| Cyclic Scheduler | Yes |
| Added Noise | Yes |
| Linear | No (fixed weights final) |
| Kernel size | 5 |
| Number of layers (time steps) | 3 |
| Number neptune run | 679 |
| Zero sum CNN filters | No |
| Hyperparameter | Values |
|---|---|
| Cyclic Scheduler | Yes |
| Added Noise | Yes |
| Linear | Yes |
| Kernel size | 5 |
| Number of layers (time steps) | 3 |
| Number neptune run | 680 |
| Zero sum CNN filters | No |
We can start from the simplest case
Thus, injecting noise in the inputs is equivalent to adding weight decay regularisation.