January, 15 2021
CAA: Padova-Verona research group on
"Constructive Approximation and Applications".
Dorian Technologies - Diagnosis ORIented ANalysis (spin-off INFN, Genova).
Rete ITaliana di
Approssiamzione (GNCS)
Voting member of the PSF - Python Software Foundation
(Updated 13/Jan/2024)
from
D. Cecchin, D. Poggiali, L. Riccardi, P. Turco, F. Bui, S. De Marchi, Analytical and experimental FWHM of a gamma camera: theoretical and practical issues, PeerJ, doi:10.7717/peerj.722.
What does a numerical analyst do in clinical studies?
from
M. Margoni, D. Poggiali, S. Zywicki, M. Rubin, A. Lazzarotto, S. Franciotta, M. G. Anglani, F. Causin, F. Rinaldi, P. Perini, M. Filippi, P. Gallo, Early red nucleus atrophy in relapse‐onset multiple sclerosis, HBM doi:10.1002/hbm.25213
from
D. Cecchin, H. Barthel, D. Poggiali, A. Cagnin, S. Tiepolt, P. Zucchetta, P. Turco, P. Gallo, A.C. Frigo, O. Sabri, F. Bui, A new integrated dual time-point amyloid PET/MRI data analysis method, EJNMMI, doi:10.1007/s00259-017-3750-0.
from the Supplementary Materials of
D. Cecchin, H. Barthel, D. Poggiali, A. Cagnin, S. Tiepolt, P. Zucchetta, P. Turco, P. Gallo, A.C. Frigo, O. Sabri, F. Bui, A new integrated dual time-point amyloid PET/MRI data analysis method, EJNMMI, doi:10.1007/s00259-017-3750-0.
Main topics of research:
What is Fake Nodes interpolation?
Instead of interpolating on the nodes x you define a mapping function S and interpolate over the fake nodes S(x).
f = lambda x: np.log(x**2+1)
x = np.linspace(-1,1,10)
y = f(x)
xx = np.linspace(-1,1,100)
yy = my_fancy_interpolator(x,y,xx)
f = lambda x: np.log(x**2+1)
x = np.linspace(-1,1,10)
y = f(x)
xx = np.linspace(-1,1,100)
S = lambda x: -np.cos(np.pi * .5 * (x+1))
yy = my_fancy_interpolator(S(x),y,S(xx))
Given a function
a set of distinct nodes
and a set of basis functions
The interpolant is given by a function
s.t.
This process can be seen equivalently as:
1. Interpolation over the mapped basis
\[\mathcal{B}^s = \{b_i \circ S \}_{i=0, \dots, N}.\]
2. Interpolation over the original basis \(\mathcal{B}\) of a function \(g: S(\Omega) \longrightarrow\mathbb{R}\)
at the fake nodes
\[S(X) = \{S(x_i) \}_{i=0, \dots, N}.\]
\(g\in C^s\) must satisfy \(g(S(x_i)) = f(x_i)\;\;\forall i\).
If \(\mathcal{P} \approx g \) on \(S(X)\) with the original basis,
then \(\mathcal{R}^s = \mathcal{P} \circ S \approx f \) on \(X\).
This allow to treat Runge Effect...
from
S. De Marchi, F. Marchetti, E. Perracchione, D. Poggiali, Polynomial interpolation via mapped bases without resampling, JCAM, doi:10.1016/j.cam.2019.112347.
...and Gibbs Effect, exploiting prior knowledge on discontinuity
from
S. De Marchi, F. Marchetti, E. Perracchione, D. Poggiali, Polynomial interpolation via mapped bases without resampling, JCAM, doi:10.1016/j.cam.2019.112347.
from
S. De Marchi, F. Marchetti, E. Perracchione, D. Poggiali, Multivariate approximation at fake nodes, AMC, doi:0.1016/j.amc.2020.125628
Fake Nodes applies to arbitrary-dimensioned data.
Numerical quadrature can also benefit from Fake Nodes Approach
from
S. De Marchi, G. Elefante, E. Perracchione, D. Poggiali, Quadrature at Fake Nodes, DRNA.
Applications to medical imaging:
MPI reconstruction.
from
S. De Marchi, W. Erb, E. Francomano, F. Marchetti, E. Perracchione, D. Poggiali, Fake Nodes approximation for Magnetic Particle Imaging, Conference paper, MELECON 2020 doi:10.1109/MELECON48756.2020.914058
Applications to medical imaging:
3D multimodal image resampling.
from
D. Poggiali, D. Cecchin, C. Campi, S. De Marchi, Oversampling errors in multimodal medical imaging are due to the Gibbs effect, Mathematics, doi:10.3390/math9121348
High resolution "morphological" image
Segmentation mask
Low resolution "functional" image
Applications to medical imaging:
3D multimodal image resampling.
from
D. Poggiali, D. Cecchin, C. Campi, S. De Marchi, Oversampling errors in multimodal medical imaging are due to the Gibbs effect, Mathematics, doi:10.3390/math9121348
Def Let \(f: \Omega \subseteq \mathbb{R}^d \longrightarrow \mathbb{R}\) be a piecewise continuous function. The function \(f\) admits a (local) modulus of continuity
$$\omega_{\bm x_0}(\delta): \mathbb{R}^{+} \longrightarrow \mathbb{R}^{+}$$
in \(\bm x_0\in\Omega\) if
\[ |f(\bm x) - f(\bm x_0) | \leq \omega_{\bm x_0}(\delta) \;\;\forall \bm x \in \Omega \text{ s.t. } \|\bm x- \bm x_0\|\leq \delta, \]
where \(\|\cdot\|\) is an arbitrary norm.
Def Image interpolation by convolution in applications is defined as
\[\mathcal{P}_f (\bm{x}) = \sum_{ijk} f(\bm{x}_{ijk})W_{ijk}(\bm{x})\]
with
\[W_{ijk}(x, y, z) = w(x-x_i)\; w(y-y_i) \;w(z-z_i)\]
the separable basis with \(w(t-t_i)\) a cardinal, normalized and compact-supported basis over an equispaced grid.
Applications to medical imaging:
3D multimodal image resampling.
from
D. Poggiali, D. Cecchin, C. Campi, S. De Marchi, Oversampling errors in multimodal medical imaging are due to the Gibbs effect, Mathematics, doi:10.3390/math9121348
Theorem Let \(f\) be a d-variate and bounded function admitting a local modulus of continuity \(\omega_{\bm x} (\delta)\). Let \(\mathcal{P}f\) be its interpolant by convolution. Then, there exits some \(\delta^* > 0\) such that
\[ |\mathcal{P}f (\bm x) - f(\bm x)| \leq \omega_{\bm x} (\delta^*)\,. \]
Lemma 4.1 A d-variate, Lipschitz-continuous function \(f\) admits a modulus of continuity of the form
\[\omega(\delta) = K\delta \]
being \(K\) the Lipschitz constant.
Lemma 4.2 A piecewise d-variate, Lipschitz-continuous function \(f\) admits a modulus of continuity of the form
\[\omega(\delta) = K\delta + D \]
Applications to medical imaging:
3D multimodal image resampling.
from
D. Poggiali, D. Cecchin, C. Campi, S. De Marchi, Oversampling errors in multimodal medical imaging are due to the Gibbs effect, Mathematics, doi:10.3390/math9121348
\((2mm)^3\)
\(1mm^3\)
Fake image
Applications to medical imaging:
3D multimodal image resampling.
from
D. Poggiali, D. Cecchin, C. Campi, S. De Marchi, Oversampling errors in multimodal medical imaging are due to the Gibbs effect, Mathematics, doi:10.3390/math9121348
I like to write (mostly in Python), share as Open Source, and maintain my own code whenever it is possible. This makes my work:
The RainCloud is an open source project. I wrote and maintain the python version.
from
M. Allen, D. Poggiali, K. Whitaker, T. R. Marshall, J. van Langen, R.A. Kievit, Raincloud plots: a multi-platform tool for robust data visualization, WOR, doi:10.12688/wellcomeopenres.15191.2.
Open science is more than just open source/open data.
from
R. Gau, S. Noble, K. Heuer et al., Brainhack: developing a culture of open, inclusive, community-driven neuroscience, Neuron, doi:10.1016/j.neuron.2021.04.001
[2023] Lab Professor of "Introduction to Numerical Calculus" for Astronomy; Main Teacher: Prof M. Vianello, 2CFU.
[2022] Lab Professor of "Introduction to Numerical Calculus" for Astronomy; Main Teacher: Prof M. Vianello, 2CFU.
[2021] Professor of "Introduction to Numerical Calculus" for Astronomy, 6CFU.
[2020] Lab Professor of "Numerical Calculus" for Mechanical Engineering (tracks 1 and 2); Main Teacher: Prof S. De Marchi, 6CFU.
[2019] Lab Professor of "Numerical Calculus" for Energy Engineering; Main Teacher: Prof A. Sommariva, 1CFU.
[2018] Professor of "Introduction to Python" for the Data Science Summer School, University of Trento, 6 CFU.
[2012-19] Teaching Assistant (TA) in Numerical Calculus for 8 courses.
[2017-2019] High school Math/Physics substitute teacher. Total time: 18 months.
Reviewer: Peer review for the following journals (alphabetical order):
Editor: Section Topical Advisory Panel Member for section Mathematical Biology of Mathematics.