Fake profiles dataset Recommended restricted links set + All unrestricted links set.
Friends restriction dataset Alphabetically restricted links set + All unrestricted links set.
All links dataset
Contains all the links.
| Users | Restricted | Unrestricted | |
|---|---|---|---|
| Fake-Profiles | 434 | 2,860 | 138,286 |
| Friends Restrictions | 355 | 6,145 | 138,286 |
| All Links | 527 | 9,005 | 138,286 |
| Classifier | Measure | Fake Profiles | Friends Restriction | All Links |
|---|---|---|---|---|
| OneR | AUC | 0.861 | 0.511 | 0.608 |
| OneR | F-Measure | 0.867 | 0.531 | 0.616 |
| OneR | False-Positive | 0.179 | 0.532 | 0.414 |
| OneR | True-Positive | 0.902 | 0.554 | 0.623 |
| J48 | AUC | 0.925 | 0.684 | 0.72 |
| J48 | F-Measure | 0.885 | 0.668 | 0.659 |
| J48 | False-Positive | 0.179 | 0.498 | 0.321 |
| J48 | True-Positive | 0.937 | 0.754 | 0.654 |
| IBK (K=10) | AUC | 0.833 | 0.587 | 0.545 |
| IBK (K=10) | F-Measure | 0.744 | 0.49 | 0.637 |
| IBK (K=10) | False-Positive | 0.174 | 0.289 | 0.749 |
| IBK (K=10) | True-Positive | 0.696 | 0.419 | 0.817 |
| Naive-Bayes | AUC | 0.902 | 0.73 | 0.75 |
| Naive-Bayes | F-Measure | 0.833 | 0.677 | 0.675 |
| Naive-Bayes | False-Positive | 0.373 | 0.403 | 0.3 |
| Naive-Bayes | True-Positive | 0.979 | 0.717 | 0.662 |
| Bagging | AUC | 0.946 | 0.698 | 0.728 |
| Bagging | F-Measure | 0.89 | 0.645 | 0.657 |
| Bagging | False-Positive | 0.171 | 0.403 | 0.312 |
| Bagging | True-Positive | 0.941 | 0.671 | 0.643 |
| AdaBoostM1 | AUC | 0.937 | 0.698 | 0.728 |
| AdaBoostM1 | F-Measure | 0.882 | 0.645 | 0.657 |
| AdaBoostM1 | False-Positive | 0.163 | 0.403 | 0.312 |
| AdaBoostM1 | True-Positive | 0.941 | 0.671 | 0.643 |
| Rotation-Forest | AUC | 0.948 | 0.79 | 0.778 |
| Rotation-Forest | F-Measure | 0.897 | 0.719 | 0.696 |
| Rotation-Forest | False-Positive | 0.158 | 0.336 | 0.275 |
| Rotation-Forest | True-Positive | 0.941 | 0.75 | 0.681 |
| Random-Forest | AUC | 0.933 | 0.706 | 0.716 |
| Random-Forest | F-Measure | 0.858 | 0.613 | 0.663 |
| Random-Forest | False-Positive | 0.14 | 0.278 | 0.369 |
| Random-Forest | True-Positive | 0.857 | 0.565 | 0.679 |
Hashed User Id
Installed Application Number - the number of installed Facebook applications on the user's Facebook account,
Date - the date when the information was collected.
Null hypothesis:
Two Sample t-test:
T-test Results:
16 feautres
for directed
graphs
8 feautres for
undirected
graphs
◦ For undirected graphs:
◦ For directed graphs:
We extracted 7 features
| Network | Is Directed | Vertices Number | Links Number | Date | Labeled |
|---|---|---|---|---|---|
| Academia | Yes | 200,169 | 1,389,063 | 2011 | No |
| Anybeat | Yes | 12,645 | 67,053 | 2011 | No |
| ArXiv HEP-PH | No | 34,546 | 421,578 | 2003 | No |
| CLASS OF 1880/81 | Yes | 53 | 179 | 1881 | Yes |
| DBLP | No | 1,665,850 | 13,504,952 | 2016 | No |
| Google+ | Yes | 107,614 | 13,673,453 | 2012 | No |
| Orkut | No | 3,072,441 | 117,185,083 | 2012 | No |
| Yes | 5,384,160 | 16,011,443 | 2012 | Yes | |
| No | 1,053,754 | 2,161,968 | 2012 | No | |
| Yelp | No | 249,443 | 3,563,818 | 2016 | No |
| AUC | TPR | FPR | Precision | |
|---|---|---|---|---|
| Simulation 1 (Arxiv HEP-PH) | 0.991 | 0.889 | 0.011 | 0.904 |
| Simulation 2 (DBLP) | 0.997 | 0.994 | 0.064 | 0.993 |
| Simulation 3 (Yelp) | 0.993 | 0.917 | 0.007 | 0.937 |
| AUC | TPR | FPR | Precision | |
|---|---|---|---|---|
| Academia | 0.999 | 0.998 | 0.000 | 0.997 |
| Anybeat | 1.000 | 0.996 | 0.001 | 0.996 |
| Arxiv HEP-PH | 0.997 | 0.953 | 0.004 | 0.965 |
| DBLP | 0.997 | 0.940 | 0.005 | 0.995 |
| Flixster | 0.992 | 0.990 | 0.092 | 0.990 |
| Google+ | 1.000 | 0.999 | 0.000 | 0.999 |
| 0.999 | 0.955 | 0.005 | 0.951 | |
| Yelp | 0.996 | 0.941 | 0.005 | 0.958 |
https://github.com/Kagandi/anomalous-vertices-detection