f (1) = 1.183832...
f (0.1) = 1.016736...
f (0.01) = 0.989637...
Wolfram
f(0.001)=0?
*Infinite expression \(\frac{1}{0}\) encountered
f(0.0001) = Indeterminate
Excel
f(0.001) = 0
f(0.0001) = 0
(Use the command taylor in Maple or Series in Mathematica.)
(Most computer algebra systems use the method
of Problem 4 to compute limits.)
>>> (sin(tan(t))-tan(sin(t))).series(t, 0.001)
2 3
- 6.99960922556642e-16⋅(t - 0.001) - 1.16678888772981e-12⋅(t - 0.001)
4 ⎛ 5 ⎞
- 1.16667149988666e-9⋅(t - 0.001) + O⎝(t - 0.001) ; t → 0.001⎠
>>> (asin(atan(t))-atan(asin(t))).series(t, 0.001)
2
2.16840434497101e-19 - 7.00286183208387e-16⋅(t - 0.001)
3 ⎛ 4 ⎞
- 1.16670562100296e-12⋅(t - 0.001) + O⎝(t - 0.001) ; t → 0.001⎠
$ isympy
>>> (sin(tan(x))-tan(sin(x))).series(x, 0, 13)
7 9 11
x 29⋅x 1913⋅x ⎛ 13⎞
- ── - ───── - ──────── + O⎝x ⎠
30 756 75600
>>> (asin(atan(x)) - atan(asin(x))).series(x, 0, 13)
7 9 11
x 13⋅x 2329⋅x ⎛ 13⎞
- ── + ───── - ──────── + O⎝x ⎠
30 756 75600