Flavien Léger
joint works with Pierre-Cyril Aubin-Frankowski,
Gabriele Todeschi, François-Xavier Vialard
Theory for minimizing movement schemes in infinite dimensions and in nonsmooth (nondifferentiable) settings, with a movement limiter given by a general cost function.
Main motivation: optimization on a space of measures \(\mathcal{P}(M)\):
minimize \(E\colon \mathcal{P}(M)\to\mathbb{R}\cup\{+\infty\}\)
Typical scheme:
where \(D(\mu,\nu)=\)
transport cost: \(W_2^2(\mu,\nu)\), \(\mathcal{T}_c(\mu,\nu)\),...
Bregman divergence: \(\operatorname{KL}(\mu,\nu)\),...
Csiszár divergence: \(\int_M (\sqrt{\mu}-\sqrt{\nu})^2\),...
...
Theory for minimizing movement schemes in infinite dimensions and in nonsmooth (nondifferentiable) settings, with a movement limiter given by a general cost function.
1. Formulations for implicit and explicit schemes in a general setting
More (not covered): forward–backward schemes, alternating minimization
2. Theory for rates of convergence based on convexity along specific paths, and generalized “\(L\)-smoothness” (“\(L\)-Lipschitz gradients”) for explicit scheme
Minimize \(E\colon X\to\mathbb{R}\cup\{+\infty\}\), where \(X\) is a set (set of measures, metric space...).
Use \(D\colon X\times Y\to\mathbb{R}\cup\{+\infty\}\), where \(Y\) is another set (often \(X=Y\)).
Algorithm
(Implicit scheme)
\(\exists h\colon Y\to\mathbb{R}\cup\{+\infty\}\)
Definition.
\(E\) is c-concave if
c-concave
not c-concave
generalizes “\(L\)-smoothness”
(majorize)
(minimize)
\(\exists h\colon Y\to\mathbb{R}\cup\{+\infty\}\)
Definition.
\(E\) is c-concave if
Algorithm.
(Explicit scheme)
Assume \(E\) c-concave.
(L–Aubin-Frankowski '23)
\(X,Y\) smooth manifolds, \(D\in C^1(X\times Y)\), \(E\in C^1(X)\) c-concave
Under certain assumptions, the explicit scheme can be written as
More: nonsmooth mirror descent, convergence rates for Newton
Definition.
(Csiszár–Tusnády ’84)
(L–Aubin-Frankowski ’23)
Evolution Variational Inequality (or five-point property):
If \((x_n,y_n)\) satisfy the EVI then
sublinear rates when \(\mu=0\)
exponential rates when \(\mu>0\)
Theorem.
(L–Aubin-Frankowski '23)
(Ambrosio–Gigli–Savaré ’05)
⏵ \(s\mapsto (x(s),\bar y)\) is a variational c-segment if \(D(x(s),\bar y)\) is finite and
⏵ \((X\times Y,D)\) is a space with nonnegative cross-curvature (NNCC space) if variational c-segments always exist.
\(X, Y\) two arbitrary sets, \(D\colon X\times Y\to\mathbb{R}\cup\{\pm\infty\}\).
Definition.
(L–Todeschi–Vialard '24)
More: origins in regularity of optimal transport
(Ma–Trudinger–Wang ’05)
(Trudinger–Wang ’09)
(Kim–McCann ’10)
convexity of the set of c-concave functions
(Figalli–Kim–McCann '11)
Gromov–Wasserstein
Kullback–Leibler divergence, Hellinger, Fisher–Rao costs are NNCC
Transport costs
\((\mathbb{G}\times\mathbb{G},\operatorname{GW}^2)\) is NCCC
\((\mathcal{P}(X)\times\mathcal{P}(Y),\mathcal{T}_c)\) NNCC \(\iff\) \((X\times Y,c)\) NNCC
(Polish spaces, lsc cost)
Ex: \(W_2^2\) on \(\mathbb{R}^n\), on \(\mathbb{S}^n\)...
\(\mathbf{X}=[X,f,\mu]\) and \(\mathbf{Y}=[Y,g,\nu]\in\mathbb{G}\)
(L–Todeschi–Vialard '24)
Variational c-segments \(\approx\) generalized geodesics
Any Hilbert or Bregman cost is NNCC
Stable by products
Stable by quotients with “equidistant fibers”
Stable under Gromov–Hausdorff convergence
Metric cost \(c(x,y)=d^2(x,y)\) NNCC\(\implies\)PC
(connect to: Ambrosio–Gigli–Savaré ’05)
(connect to: Kim–McCann '12)
(connect to: Loeper ’09)
(L–Todeschi–Vialard '24)
Suppose that for each \(x\in X\) and \(n\geq 0\),
Then sublinear (\(\mu=0\)) or linear (\(\mu>0\)) convergence rates.
⏵ there exists a variational c-segment \(s\mapsto (x(s),y_n)\) on \((X\times Y,D)\) with \(x(0)=x_n\) and \(x(1)=x\)
⏵ \(s\mapsto E(x(s))-\mu \,D(x(s),y_{n+1})\) is convex
⏵ \(\displaystyle\lim_{s\to 0^+}\frac{D(x(s),y_{n+1})}{s}=0\)
Theorem.
(L–Aubin-Frankowski '23)