László Oroszlány
KRFT, ELTE
Trends in Nanotechnology @ BME
Universal
System specific
an AWFULL LOT \(\approx 10^{23}\) of variables..
Theorem 1: The external potential (and hence the total energy), is a unique functional of the electron density.
Theorem 2: The ground state density minimizes the total energy functional.
Phys. Rev. 136, B864 (1964)
a function maps numbers to numbers:
a functional maps functions to numbers:
Phys. Rev. 140, A1133 (1965)
| PRO | CON | |
|---|---|---|
|
Plane waves |
-simple to implement -one convergence parameter |
- resource hungry - big basis set needed |
| Atomic like orbitals | - small basis - sparse matrix methods - scales to BIG systems |
-harder to implement -many things influence convergence |
|
KKR method baseless method.. relies on scattering approach and Green's functons |
-relativistic effects are easy -standard for magnetic systems -most accurate for some problems |
-harder to implement -smaller community -some features not yet implemented.. |
Motivation:
Approximations:
LDA+U:
J. Phys.: Cond. Matt. 9,767 (1997)
DMFT:
Phys. Rev. Lett. 62, 324 (1989)
QMC:
Rev. Mod. Phys. 73, 33 (2001)
GW:
Phys. Rev. 139, A796 (1965)
BSE:
Phys. Rev. Lett. 75, 818 (1995)
6000 atom
3000 proc
120s/scf
Massively
parallel
Phonon spectrum
J. Chem. Phys. 143, 064710 (2015)
Excitations with
GW method
Phys. Rev. B 75, 235102 (2007)
https://www.vasp.at/
J. Phys.: Cond. Matt. 27, 054004 (2015)
J. Phys.: Cond. Matt. 26, 305503 (2014)
6000 atom
2000 proc
10 sec/scf
SIESTA-PEXSI parallelization
New J. Phys., 16, 093029 (2014)
Phys. Rev. B 65, 165401 (2002)
Local quantities (e.g. STM)
Ideal as an input for transport calculations
https://launchpad.net/siesta
KKRNano @ http://www.judft.de/ massive parallelization
PRB 94, 104511 (2016)
abinitio superconductivity
PRB 89, 224401 (2014)
finite temperature magnetism
PRB 82, 024411 (2010)
ARPES+DMFT
Budapest
München
Jülich
IBM J. Res. Dev. 1, 223 (1957 )
IBM J. Res. Dev. 1, 223 (1957 )
The structure of \( V\) is such that in order to find matrix elements of \(G\) in the neighborhood of the scatterer one only need to invert a FINITE matrix!
Dyson's equation
the scattering matrix:
two terminal case:
Fisher-Lee relation: Phys. Rev. B 23, 6851(R) (1981)
Steady state current due to a finite bias.
Non-equilibrium population of scatterer needs to be taken in to account! \(\Rightarrow\) Keldysh formalism
H. Haug and A. P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors
Example
Negative differential resistance
in molecular junctions:
Nanotechnology 19, 455203 (2008)
New Journal of Physics 16 093029 (2014)
Phys. Rev. B 93, 224510 (2016)
https://kwant-project.org/
written in python, ideal for quick and dirty calculations
2x100x400 site disordered topological insulator
quantum Hall effect
flying qbit
http://eqt.elte.hu/equus/home
conductivity of a 4\(\mu m\) wide graphene ribbon
graphene ribbon antidot in \(\mathbf{B}\) field
1\(\mu m \times \) 1\(\mu m\)
BiTeI/graphene/BiTeI sandwitch
graphene Josephson junction
Multi terminal calculations
Statistical analysis of environmental effects
http://www.physics.lancs.ac.uk/gollum/
Magneto transport
thermoelectric properties
Makk et al., Phys. Rev. Lett. 107 276801 (2011)