Computational Studies of Electron Systems

\displaystyle \int\limits_0^\infty
int main()
{
    printf("Hello world\n");
    return 0;
}
\textrm{d}t=\textrm{DFT}

Gergő Kukucska

september, 2018

Single body problem

\hat{H}|\psi\rangle=E|\psi\rangle
\hat{H}=\hat{T}+\hat{V}
\hat{T}=\frac{-\hbar^2\nabla^2}{2m}\quad\hat{V}=V(\mathbf{r})

Analytically solvable for numerous cases:

  • Harmonic oscillator
  • Hydrogen atom
  • etc....

Two body problem

\hat{H}|\psi\rangle=E|\psi\rangle
\hat{H}=\hat{T}+\hat{V}+\hat{W}
\hat{T}=\frac{-\hbar^2\nabla_1^2}{2m}+\frac{-\hbar^2\nabla_2^2}{2m}
\hat{V}=V(\mathbf{r}_1)+V(\mathbf{r}_2)\quad \hat{W}=V_{ee}(\mathbf{r}_1-\mathbf{r}_2)

Scattering problem:

  • Born approximation
  • Partial waves

Helium atom: 1 nucleus and 2 electrons

\hat{H}=\frac{-\hbar^2\nabla_1^2}{2m}+\frac{-\hbar^2\nabla_2^2}{2m}+\frac{-\hbar^2\nabla_I^2}{2M}+\hat{W}
\hat{W}=V_{ee}(\mathbf{r}_1-\mathbf{r}_2)+V_{en}(\mathbf{R}_I-\mathbf{r}_1)+V_{en}(\mathbf{R}_I-\mathbf{r}_2)

Born-Oppenheim approximation: \(m<<M\)

\Psi(\lbrace R_I\rbrace,\lbrace r_i\rbrace)=\Phi(\lbrace R_I\rbrace)\cdot \psi(\lbrace R_I\rbrace,\lbrace r_i\rbrace)

Helium atom: 1 nucleus and 2 electrons

\hat{H}=\frac{-\hbar^2\nabla_1^2}{2m}+\frac{-\hbar^2\nabla_2^2}{2m}+\frac{-\hbar^2\nabla_I^2}{2M}+\hat{W}
\hat{W}=V_{ee}(\mathbf{r}_1-\mathbf{r}_2)+V_{en}(\mathbf{R}_I-\mathbf{r}_1)+V_{en}(\mathbf{R}_I-\mathbf{r}_2)

Born-Oppenheim approximation: fixed nuclei

Analytically unsolvable 

\hat{H}=\underbrace{\frac{-\hbar^2\nabla_1^2}{2m}+V_{en}(\mathbf{R}_I-\mathbf{r}_1)}_{\textrm{Hydrogen-like}}+ \underbrace{\frac{-\hbar^2\nabla_2^2}{2m}+V_{en}(\mathbf{R}_I-\mathbf{r}_2)}_{\textrm{Hydrogen-like}}+\\ +V_{ee}(\mathbf{r}_1-\mathbf{r}_2)

Assimptotic methods:

  • perturbation: \(V_{ee}\) as small perturbation
    • Problem: Huge first order corrections (many orders needed to converge), need description of scattering states
  • variation calculus:
E[\psi]=\frac{\langle\psi|\hat{H}|\psi\rangle}{\langle\psi|\psi\rangle}
\delta E=0 \leftrightarrow \hat{H}|\psi\rangle=E|\psi\rangle

Practical implementation:

  • \(|\psi\rangle\) ansatz is the function of some parameters \(\lbrace a_j\rbrace\)
    • Anti-symmetric: \(\psi (1,2)=-\psi (2,1)\)
  • Calculating the regular \(E(a_j)\) function and minimizing it

 

  • best one Slater determinant solution: Hartree-Fock equations:

Who's got the largest.... ansatz?

  • More parameters \(\rightarrow\) larger parameterspace \(\rightarrow\) better \(E_0\)
  • Convenient ansatz: Slater-determinant 
|\psi\rangle=\frac{1}{\sqrt{2}} \left| \begin{matrix} \psi_1(1)&\psi_1(2)\\ \psi_2(1)&\psi_2(2)\\ \end{matrix} \right| =\frac{\psi_1(1)\psi_2(2)-\psi_1(2)\psi_2(1)}{\sqrt{2}}
\displaystyle \hat{T}\psi_1(\mathbf{r}_1)+V_{en}(\mathbf{r}_1)\psi_1(\mathbf{r}_1)+ \underbrace{\int\textrm{d}\mathbf{r}_2V_{ee}(\mathbf{r}_1-\mathbf{r}_2)|\psi_2(\mathbf{r}_2)|^2\psi_1(\mathbf{r}_1)}_\textrm{Coulomb term}-\\- \underbrace{\int\textrm{d}\mathbf{r}_2V_{ee}(\mathbf{r}_1-\mathbf{r}_2)\psi^*_2(\mathbf{r}_2)\psi_1(\mathbf{r}_2)\psi_2(\mathbf{r}_1)}_\textrm{Exchange term}=E_{HF}\psi_1(\mathbf{r}_1)

 

  • \(E_{HF}\) is not the experimental energy
    • What's better than a Slater determinant?
    • Two Slater determinant 
      •  includes correlation effects

What does correlation mean?

 

Different types of correlation:

  • Radial correlation: electrons orbiting with different radius
  • Angular correlation: electrons avoiding to be on the same side of the nuclei: \(\psi\approx 0\) if \(\varphi_1\approx \varphi_2\), \(\theta_1\approx \theta_2\)
  • Coulomb hole: electrons completely avoid each other:  \(\psi\approx 0\) if r\(_1\approx\) r\(_2\)
  • Fermi hole (larger atoms): result of Pauli's exclusion principle
    • triplet spin state: \(|\uparrow\uparrow\rangle\)
      • anti symmetric spatial part \(\psi\approx 0\) if r\(_1\approx\) r\(_2\)
    • singlet spin state:\(\displaystyle\frac{(|\downarrow\uparrow\rangle-|\uparrow\downarrow\rangle)}{\sqrt{2}}\)
      • symmetric spatial part \(\psi\neq 0\) if r\(_1\approx\) r\(_2\)
E_\textrm{exp}=E_\textrm{HF}+E_\textrm{c}

Brute force always works!

 

Completely numeric solution with finite element methods:

Zheng, W. and Ying, L. (2004),  Int. J. Quantum Chem., 97: 659-669. doi:10.1002/qua.10770

End of the semester

for astrophysicists....

Many body problem

\hat{H}|\psi\rangle=E|\psi\rangle
\hat{H}=\hat{T}+\hat{V}+\hat{W}
\hat{T}=\sum\limits_{i=1}^{N_e}\frac{-\hbar^2\nabla_i^2}{2m}+ \sum\limits_{I=1}^{N_n}\frac{-\hbar^2\nabla_I^2}{2M_I}
\hat{V}=\sum\limits_{i,I}V_{en}(\mathbf{r}_i-\mathbf{R}_I)\\ \hat{W}=\frac{1}{2}\sum\limits_{i,j}V_{ee}(\mathbf{r}_i-\mathbf{r}_j)+\frac{1}{2}\sum\limits_{I,J}V_{nn}(\mathbf{R}_I-\mathbf{R}_J)

Many body problem

\left(\sum\limits_{i=1}^{N_e}\frac{-\hbar^2\nabla_i^2}{2m}+\sum\limits_{i,I}V_{en}(\mathbf{r}_i-\mathbf{R}_I)+\frac{1}{2}\sum\limits_{i,j}V_{ee}(\mathbf{r}_i-\mathbf{r}_j)+\right.\\ \left.+\frac{1}{2}\sum\limits_{I,J}V_{nn}(\mathbf{R}_I-\mathbf{R}_J)\right)\psi(\lbrace\mathbf{R}_I\rbrace,\lbrace\mathbf{r}_i\rbrace)=\\\left. =E_e(\lbrace\mathbf{R}_I\rbrace,\lbrace\mathbf{r}_i\rbrace)\psi(\lbrace\mathbf{R}_I\rbrace,\lbrace\mathbf{r}_i\rbrace)\right.

Born-Oppenheim approximation: \(m<<M\)

\Psi(\lbrace R_I\rbrace,\lbrace r_i\rbrace)=\Phi(\lbrace R_I\rbrace)\cdot \psi(\lbrace R_I\rbrace,\lbrace r_i\rbrace)

Separated Schrödinger equations:

\left(\sum\limits_{I=1}^{N_n}\frac{-\hbar^2\nabla_I^2}{2M_I}+E_e(\lbrace R_I\rbrace)\right)\Phi(\lbrace R_I\rbrace)=E(\lbrace R_I\rbrace)

Many body problem

Cross term:

\hat{B}=\sum\limits_I\hat{T}(I)\psi(\{\mathbf{r}_i\},\{\mathbf{R}_I\})

Two approximations:

  • Born-Oppenheimer approximation: \(\hat{B}\)=0
  • Adiabatic approximation: effect of \(\hat{B}\) as expectation value

When does it matter?

  • Only if the energy of two electronic states are close (conical intersection)
  • Slightly change the optimal configuration of atoms

Conical intersection

Brute force always works?

1 Carbon, 4 Hydrogen = 10 electrons

30 independent coordinates

(excluding spin)

100 point per coordinate

\(100^{30}=10^{60}\) Complex number

1Complex number /\( 1\textrm{\AA}^3 \) (Using spins as bits)

Wavefunction stored in ~\(10^{30}\,\textrm{m}^3\)

The world is not enough...Literally!!!!

Volume of earth:

\(4\pi/3\cdot(6.37)^3\cdot10^{18}\textrm{m}^3\approx10^{21}\textrm{m}^3\)

We need 1 billion earth!

<<\LARGE

We don't have 1 billion earths... YET!!!

Until we get enough storage... Let's think!

Apply symmetry considerations?

  • improvement by 2-100 factor                                     

Reduce number of coordinates?

  • Consider only half of the independent coordinates

 

 

 

 

 

 

                                                     

15 independent coordinates, 100 point per coordinate

\(100^{15}=10^{30}\) Complex number,1Complex number /\( 1\textrm{\AA}^3 \)

Wavefunction stored in ~\(10^{1}\,\textrm{m}^3\)

Only 10 box of wood is enough!

Hohenberg-Kohn theorems

We can reduce the number of coordinates to 3!

Consider an interacting many-body system in an external potential:

Hohenberg-Kohn I: The external potential (\(v_\textrm{ext}\)), and hence the total energy, is a unique functional of the electron density (\(n(\mathbf{r})\)).

Hohenberg-Kohn II: The groundstate energy can be obtained variationally: the density that minimises the total energy is the exact groundstate density. 

Hohenberg-Kohn I: The external potential (\(v_\textrm{ext}\)), and hence the total energy, is a unique functional of the electron density (\(n(\mathbf{r})\)).

The usual way:

The external \(v_\textrm{ext}\) potential defines the Hamiltonian \(\hat{H}\)

\hat{H}|\psi\rangle=E|\psi\rangle

Ground state obatined by solving:

Electron density obtained:

\displaystyle n(\mathbf{r})=\int\prod\limits_{i=2}^{N_e}\textrm{d} \mathbf{r}_i |\psi(\mathbf{r},\mathbf{r}_2,\dots,\mathbf{r}_{N_e})|^2

What's new?

Hohenberg-Kohn I: The external potential (\(v_\textrm{ext}\)), and hence the total energy, is a unique functional of the electron density (\(n(\mathbf{r})\)).

The Hohenberg-Kohn way:

The external \(v_\textrm{ext}\) potential defines the Hamiltonian \(\hat{H}\)

\hat{H}|\psi\rangle=E|\psi\rangle

Ground state obatined by solving:

Electron density obtained:

\displaystyle n(\mathbf{r})=\int\prod\limits_{i=2}^N\textrm{d} \mathbf{r}_i |\psi(\mathbf{r},\mathbf{r}_2,\dots,\mathbf{r}_N)|^2

What's new?

THE RELATION IS UNIQUE AND REVERSIBLE!!!

Hohenberg-Kohn I: The external potential (\(v_\textrm{ext}\)), and hence the total energy, is a unique functional of the electron density (\(n(\mathbf{r})\)).

Lets prove it! 

\hat{H_1}=\sum\limits_{i=1}^{N}\hat{T}(i)+\hat{W}_{ee}+\hat{V}_1\quad \hat{H_2}=\sum\limits_{i=1}^{N}\hat{T}(i)+\hat{W}_{ee}+\hat{V}_2
\hat{H_1}|\psi\rangle=E_1|\psi\rangle\qquad \hat{H_2}|\psi\rangle=E_2|\psi\rangle
(\hat{V}_1-\hat{V}_2)|\psi\rangle=(E_1-E_2)|\psi\rangle
\sum\limits_{i=1}^{3N}(v_1(\mathbf{r}_i)-v_2(\mathbf{r}_i))\psi(\mathbf{r}_1,\mathbf{r}_2,\dots,\mathbf{r}_N)=(E_1-E_2)\psi(\mathbf{r}_1,\mathbf{r}_2,\dots,\mathbf{r}_N)

This must be satisfied in all points, thus \(\hat{V}_1\)\(=\hat{V}_2+\) constant

\hat{V}_1\neq\hat{V}_2+\textrm{constant}

Round 1: Proove that two external potential can't yield the same ground state wavefunction

Hohenberg-Kohn I: The external potential (\(v_\textrm{ext}\)), and hence the total energy, is a unique functional of the electron density (\(n(\mathbf{r})\)).

Round 2: Prove that two different wavefunction cannot yield the same density

\hat{H_1}|\psi_1\rangle=E_1^0|\psi_1\rangle\quad \hat{H_2}|\psi_2\rangle=E_2^0|\psi_2\rangle
E_1^0=\langle\psi_1|\hat{H}_1|\psi_1\rangle<\langle\psi_2|\hat{H}_1|\psi_2\rangle=\langle\psi_2|\hat{H}_2|\psi_2\rangle+\langle\psi_2|\hat{V}_1-\hat{V}_2|\psi_2\rangle
\displaystyle E_1^0 < E_2^0+\int n_0(\mathbf{r})\lbrace v_1(\mathbf{r})-v_2(\mathbf{r})\rbrace
\displaystyle E_2^0 < E_1^0+\int n_0(\mathbf{r})\lbrace v_2(\mathbf{r})-v_1(\mathbf{r})\rbrace
\displaystyle E_2^0 +E_1^0< E_1^0+E_2^0

Hohenberg-Kohn II: The groundstate energy can be obtained variationally: the density that minimises the total energy is the exact groundstate density. 

Already prooven relation:

\psi\Longleftrightarrow n(\mathbf{r}),\quad E[n(\mathbf{r})]
E[n(\mathbf{r})]=\langle\psi|\hat{H}|\psi\rangle+\langle\psi|\hat{V}_\textrm{ext}|\psi\rangle

Consider other \(|\psi'\rangle\) wavefunction:

E[n'(\mathbf{r})]=\langle\psi'|\hat{H}|\psi'\rangle+\langle\psi'|\hat{V}_\textrm{ext}|\psi'\rangle

From the variational principle:

\langle\psi'|\hat{H}|\psi'\rangle+\langle\psi'|\hat{V}_\textrm{ext}|\psi'\rangle> \langle\psi|\hat{H}|\psi\rangle+\langle\psi|\hat{V}_\textrm{ext}|\psi\rangle
E[n'(\mathbf{r})]>E[n(\mathbf{r})]

Next step?

Equality constrain!

\delta E[n(\mathbf{r})]=0
\displaystyle \int n(\mathbf{r})\textrm{d}\mathbf{r}=N_e

Modified functional:

\displaystyle \delta\left[E[n(\mathbf{r})]+\mu\left(N_e-\int n(\mathbf{r})\textrm{d}\mathbf{r}\right)+\int n(\mathbf{r})v_\textrm{ext}(\mathbf{r})\textrm{d}\mathbf{r}\right]=0

Two way to solve it:

  • Thomas-Fermi approximation
  • Kohn-Sham equation

Euler equation:

\displaystyle \frac{\delta E[n(\mathbf{r})]}{\delta n(\mathbf{r})} +v_\textrm{ext}(\mathbf{r})=\mu

Thomas-Fermi approximation

Kinetic part of \(E[n]\) from Heisenbergs uncertainity:

\Delta p_x \Delta x \geq h
V_{ph}=V_\textrm{real}V_\textrm{momentum}=V\frac{4\pi}{3}p_F^3(\mathbf{r})

Kinetic energy density:

Relation between maximal momentum and density:

Volume of the phase space:

Number of states within the phase space:

N=2V_{ph}/h^3=V\frac{8\pi}{3h^3}p_F^3(\mathbf{r})
p_F(\mathbf{r})=\left(\frac{3h^3}{8\pi}\right)^{1/3}n(\mathbf{r})^{1/3}
\displaystyle t=\frac{1}{V}\int\frac{p^2}{2m}\textrm{d}N=\int\limits_0^{p_F}\frac{p^2}{2m}\frac{4\pi p^2V\cdot 2}{h^3}\textrm{d}p=C_\textrm{kin}n(\mathbf{r})^{5/3}

Thomas-Fermi approximation

Total energy functional:

\displaystyle E[n]=\int\textrm{d}\mathbf{r}C_\text{kin}n^{5/3}(\mathbf{r})+V_\text{ext}(\mathbf{r})n(\mathbf{r})+\frac{1}{2}\int\textrm{d}\mathbf{r'}\frac{n(\mathbf{r})n(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|}

Euler equation:

\displaystyle \frac{5}{3}C_\text{kin}n^{2/3}(\mathbf{r})+V_\text{ext}(\mathbf{r})+\int\textrm{d}\mathbf{r'}\frac{n(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|}=\mu

Pros:

  • Self consistent description of quasi-classic electron system
  • Good for qualitative description of weekly interacting \(e^-\) gas

Cons:

  • Approximate kinetic energy
  • No exchange term
  • Can't describe strongly oscillating systems

Kohn-Sham equations

Search the wavefunction in a single Slater-determinant form:

\displaystyle \Phi=\frac{1}{N!}\textrm{det}(\varphi_1,\varphi_2,\dots,\varphi_{N_e})

Kinetic energy:

\displaystyle T=\sum\limits_i^{N_e}\int\text{d}\mathbf{r}\varphi_i^*(\mathbf{r})\frac{-\hbar^2\nabla^2}{2m}\varphi_i(\mathbf{r})

Self interaction energy:

\displaystyle W=\frac{1}{2}\int\text{d}\mathbf{r}\text{d}\mathbf{r}'\frac{n(\mathbf{r})n(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|}+E_{xc}[n(\mathbf{r})]
\displaystyle \langle\hat{A}\rangle=\left\langle\sum\limits_i^{N_e}\hat{A}_i\right\rangle=\sum\limits_i^{N_e}\langle\varphi_i|\hat{A}_i|\varphi_i\rangle

Kohn-Sham equations

Modified Lagrangian:

\displaystyle \mathcal{L}=\sum\limits_i^{N_e}\int\text{d}\mathbf{r}\varphi_i^*(\mathbf{r})\frac{-\hbar^2\nabla^2}{2m}\varphi_i(\mathbf{r})+ \frac{1}{2}\int\text{d}\mathbf{r}\text{d}\mathbf{r}'\frac{n(\mathbf{r})n(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|}+\\+E_{xc}[n(\mathbf{r})]+\int\text{d}\mathbf{r}v_\text{ext}(\mathbf{r})n(\mathbf{r})+\\ +\sum\limits_i^{N_e}\epsilon_i\left(\int\text{d}\mathbf{r}\varphi_i^*(\mathbf{r})\varphi_i(\mathbf{r})-1 \right)

Each Kohn-Sham orbital have to be normalized!

\displaystyle \int\text{d}\mathbf{r}\varphi_i^*(\mathbf{r})\varphi_i(\mathbf{r})=1, \quad n(\mathbf{r})=\sum\limits_i^{N_e}\varphi_i^*(\mathbf{r})\varphi_i(\mathbf{r})

Kohn-Sham equations

Minimizing the constrained energy functional:

\displaystyle \frac{\delta \mathcal{L}}{\delta \varphi^*_i}=0

Kohn-Sham equations:

\displaystyle \frac{-\hbar^2\nabla^2}{2m}\varphi_i(\mathbf{r})+ \underbrace{\left(v_\text{ext}(\mathbf{r})+\int\text{d}\mathbf{r}'\frac{n(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|}\right)}_{v_{eff}(\mathbf{r})}\varphi_i(\mathbf{r})+\\ +\frac{\delta E_{xc}[n]}{\delta n}\varphi_i(\mathbf{r})=\epsilon_i\varphi_i(\mathbf{r})

Exchange-correlation potential:

\displaystyle v_{xc}(\mathbf{r})=\frac{\delta E_{xc}[n(\mathbf{r})]}{\delta n(\mathbf{r})}

One last question: What is \(E_{xc}[n]\)?

Answer: Noone knows

Form of exchange-correlation functional

Classical Coulomb energy:

\displaystyle \frac{1}{2}\int\text{d}\mathbf{r}\text{d}\mathbf{r}'\frac{n(\mathbf{r})n(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|}

Exchange energy:

\displaystyle \frac{1}{2}\int\text{d}\mathbf{r}\text{d}\mathbf{r}'\frac{n(\mathbf{r})n_x(\mathbf{r},\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|}

Correlation energy:

\displaystyle \frac{1}{2}\int\text{d}\mathbf{r}\text{d}\mathbf{r}'\frac{n(\mathbf{r})n_c(\mathbf{r},\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|}

Sum rules:

\displaystyle \int\text{d}\mathbf{r}'n_c(\mathbf{r},\mathbf{r}')=0\quad \int\text{d}\mathbf{r}'n_x(\mathbf{r},\mathbf{r}')=-1

Exact xc should obey these sum rules!

\displaystyle E_{xc}[n]=E_x[n]+E_c[n]

Fock exchange term

?????

How to solve the Kohn-Sham equations?

Random initial wavefunction

Calculate density

Construct \(v_{xc}\) and Coulmb term

Solve the eigenvalue problem

Check convergence

Post scf calculations (forces, bandstructure, etc.)

False

True

How to converge?

Convergence criteria:

  • Total energy
  • Kohn-Sham eigenvalues
  • Density

Updating the density from the previous iteration:

  • No mixing: \( n_{in}(i)=n_{out}(i)\)
  • Linear mixing: \(n_{in}(i)=n_{out}(i)+A(n_{out}(i-1)-n_{out}(i))\)
  • Kerker mixing: \(n_{in}(i)=n_{out}(i)+A\frac{i^2}{i^2+B^2}(n_{out}(i-1)-n_{out}(i))\)
  • Pulay mixing:  \(n_{in}(i)=n_{out}(i)+A\cdot\text{min}\left(\frac{i^2}{i^2+B^2},A_{min}\right)(n_{out}(i-1)-n_{out}(i))\)

Which one should you choose?

  • Convergence criteria: Total energy, density (code dependent)
  • Updating method: Pulay generally works, can be problem dependent

Why do you mix?

Why do you mix?

Summary

What did we learn today?

  • Brute force doesn't work always
  • We need to wait for astrophysicist
  • We can calculate correlation with a correlation free ansatz
  • We don't know nothing

Whats next?

  • We will go to the ZOO!... Of \(E_{xc}\) parametrizations
  • How to calculate numerically with finite basis?
  • Why use localized basis sets
  • Why don't use localized basis sets
  • How to apply DFT to real problems...
  • How to improve results?

Thank you for your attention!

Made with Slides.com