Giovanni Pellegrini @
GENETIC MULTI-OBJECTIVE OPTIMIZATION FOR INVERSE DESIGN OF 1DPC
SUPERVISED NEURAL NETWORKS FOR DIRECT AND INVERSE DESIGN OF NANOHOLE ARRAYS
SUPERVISED, PHYSICS INFORMED NEURAL NETWORKS FOR PHASE RETRIEVAL
UNSUPERVISED, PHYSICS INFORMED NEURAL NETWORKS FOR PTYCHOGRAPHY
Giovanni Pellegrini, Jonathan J. Barolak, Marco Finazzi, Michele Celebrano, F. Michelotti, A. Occhicone and Paolo Biagioni
| n.1 | n.2 | n.3 | |
|---|---|---|---|
| Lattice | Hexagonal | Square | Square |
| Material | Ag | Au | SiOx |
| Thickness (nm) | 100 | 115 | 90 |
| Radius (nm) |
60 | 110 | 140 |
| Pitch (nm) |
450 | 550 | 515 |
Jahan, T. et al. Deep learning-driven forward and inverse design of nanophotonic nanohole arrays: streamlining design for tailored optical functionalities and enhancing accessibility. Nanoscale (2024) doi:10.1039/D4NR03081H.
Jahan, T. et al. Deep learning-driven forward and inverse design of nanophotonic nanohole arrays: streamlining design for tailored optical functionalities and enhancing accessibility. Nanoscale (2024) doi:10.1039/D4NR03081H.
Data analysis
Direct model
Inverse model
Slides for the full tutorial
| n.1 | n.2 | n.3 | |
|---|---|---|---|
| Lattice | Hexagonal | Square | Square |
| Material | Ag | Au | SiOx |
| Thickness (nm) | 100 | 115 | 90 |
| Radius (nm) |
60 | 110 | 140 |
| Pitch (nm) |
450 | 550 | 515 |
Jahan, T. et al. Deep learning-driven forward and inverse design of nanophotonic nanohole arrays: streamlining design for tailored optical functionalities and enhancing accessibility. Nanoscale (2024) doi:10.1039/D4NR03081H.
| Lattice | Hexagonal |
| Material | Ag |
| Thickness (nm) | 100 |
| Radius (nm) |
60 |
| Pitch (nm) |
450 |
Direct: \( g_{_{W}}:\mathbb{R}^{5} \to \mathbb{R}^{200} \)
Inverse: \( g_{_{W}}:\mathbb{R}^{200} \to \mathbb{R}^{5} \)
Credits: Alberto De Giuli
Giovanni Pellegrini and Jacopo Bertolotti
Giovanni Pellegrini, Jonathan J. Barolak, Carmelo Grova, Charles S. Bevis, Daniel E. Adams and Giulia F. Mancini