Copyright © 直通硅谷
http://www.zhitongguigu.com/
DFS
BFS
Copyright © 直通硅谷
http://www.zhitongguigu.com/
Problem
sub-Problem
sub-Problem
sub-Problem
sub-sub-Problem
sub-sub-Problem
sub-sub-sub-Problem
base-
problem
Copyright © 直通硅谷
http://www.zhitongguigu.com/
Search Order:
Copyright © 直通硅谷
http://www.zhitongguigu.com/
Search Order:
Copyright © 直通硅谷
http://www.zhitongguigu.com/
Problem
sub-Problem
sub-Problem
sub-Problem
sub-sub-Problem
sub-sub-Problem
sub-sub-Problem
sub-sub-Problem
Copyright © 直通硅谷
http://www.zhitongguigu.com/
Search Order:
Copyright © 直通硅谷
http://www.zhitongguigu.com/
Search Order:
Copyright © 直通硅谷
http://www.zhitongguigu.com/
A
/ \
B C
/ \ / \
D E F G
/ \
H I
Copyright © 直通硅谷
http://www.zhitongguigu.com/
DFS Search Order:
U, R, D, L
Copyright © 直通硅谷
http://www.zhitongguigu.com/
DFS Search Order:
U, R, D, L
Copyright © 直通硅谷
http://www.zhitongguigu.com/
BFS Search Order:
U, R, D, L
Copyright © 直通硅谷
http://www.zhitongguigu.com/
BFS Search Order:
U, R, D, L
Copyright © 直通硅谷
http://www.zhitongguigu.com/
DFS and BFS are both algorithms for searching TREE and GRAPH, but we will ONLY focus on trees, which is more common in interviews.
Copyright © 直通硅谷
http://www.zhitongguigu.com/
Copyright © 直通硅谷
http://www.zhitongguigu.com/
A
/ \
B C
/ \ / \
D E F G
/ \
H I
public void preOrder(TreeNode root) {
if (root == null) {
return;
}
// visit root
preOrder(root.left);
preOrder(root.right);
}
Copyright © 直通硅谷
http://www.zhitongguigu.com/
Given a binary tree, calculate its depth.
1
2
3
Depth: 3
1
2
3
4
Depth: 4
3
2
3
3
4
1
2
3
4
2
Depth: 4
Copyright © 直通硅谷
http://www.zhitongguigu.com/
Given a binary tree, calculate its depth.
public int depth(TreeNode root) {
if (root == null) {
return 0;
}
return Math.max(depth(root.left), depth(root.right)) + 1;
}
Copyright © 直通硅谷
http://www.zhitongguigu.com/
Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
1
2
2
3
3
4
4
False
1
2
3
4
True
3
2
3
3
4
Copyright © 直通硅谷
http://www.zhitongguigu.com/
Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
Copyright © 直通硅谷
http://www.zhitongguigu.com/
Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
public boolean isBalanced(TreeNode root) {
if (root == null)
return true;
if (Math.abs(getDepth(root.left) - getDepth(root.right)) > 1)
return false;
return isBalanced(root.left) && isBalanced(root.right);
}
int getDepth(TreeNode root) {
if (root == null)
return 0;
return Math.max(getDepth(root.left), getDepth(root.right)) + 1;
}
Copyright © 直通硅谷
http://www.zhitongguigu.com/
Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
public boolean isBalanced(TreeNode root) {
return depth(root) != -1;
}
public int depth(TreeNode root) {
if (root == null) {
return 0;
}
int leftDepth = depth(root.left);
int rightDepth = depth(root.right);
if (leftDepth == -1 || rightDepth == -1 ||
Math.abs(leftDepth - rightDepth) > 1) {
return -1;
}
return Math.max(leftDepth, rightDepth) + 1;
}
Copyright © 直通硅谷
http://www.zhitongguigu.com/
Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center).
1 / \ 2 2 / \ / \ 3 4 4 3
True
1 / \ 2 2 \ \ 3 3
False
1 / \ 2 2 / \ / \ 4 3 4 3
False
1 / \ 2 2 / \ 3 3
True
Copyright © 直通硅谷
http://www.zhitongguigu.com/
Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center).
1 / \ 2 2 / \ / \ 3 4 4 3
True
1 / \ 2 2 \ \ 3 3
False
Copyright © 直通硅谷
http://www.zhitongguigu.com/
Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center).
public boolean isSymmetric(TreeNode root) {
if (root == null) {
return true;
}
return isSymmetric(root.left, root.right);
}
public boolean isSymmetric(TreeNode left, TreeNode right) {
if (left == null && right == null) {
return true;
}
if (left == null && right != null) {
return false;
}
if (left != null && right == null) {
return false;
}
if (left.val != right.val) {
return false;
}
return isSymmetric(left.left, right.right)
&& isSymmetric(left.right, right.left);
}
Copyright © 直通硅谷
http://www.zhitongguigu.com/
Given a binary tree, find its minimum depth.
The minimum depth is the number of nodes along the shortest path from the root node down to the nearest leaf node.
1 / \ 2 2 / \ / \ 3 4 4 3
3
1 / \ 2 2 / \ 3 4
2
1 / \ 2 2 / \ 3 3
3
Copyright © 直通硅谷
http://www.zhitongguigu.com/
Given a binary tree, find its minimum depth.
The minimum depth is the number of nodes along the shortest path from the root node down to the nearest leaf node.
Copyright © 直通硅谷
http://www.zhitongguigu.com/
Given a binary tree, find its minimum depth.
The minimum depth is the number of nodes along the shortest path from the root node down to the nearest leaf node.
public int minDepth(TreeNode root) {
if (root == null) {
return 0;
}
int leftDepth = minDepth(root.left);
int rightDepth = minDepth(root.right);
if (leftDepth == 0) {
return rightDepth + 1;
} else if (rightDepth == 0) {
return leftDepth + 1;
}
return Math.min(leftDepth, rightDepth) + 1;
}
Copyright © 直通硅谷
http://www.zhitongguigu.com/
Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all the values along the path equals the given sum.
5 / \ 4 8 / / \ 11 13 4 / \ \ 7 2 1
22: [5, 4, 11, 2]
3 / \ 2 6 / / \ 9 22 9 / \ \ 7 2 1
31: [3, 6, 22]
Copyright © 直通硅谷
http://www.zhitongguigu.com/
Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all the values along the path equals the given sum.
5 / \ 4 8 / / \ 11 13 4 / \ \ 7 2 1
22: [5, 4, 11, 2]
Knapsack:
Copyright © 直通硅谷
http://www.zhitongguigu.com/
Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all the values along the path equals the given sum.
5 / \ 4 8 / / \ 11 13 4 / \ \ 7 2 1
22: [5, 4, 11, 2]
public boolean hasPathSum(TreeNode root, int sum) {
if (root == null) {
return false;
}
if (root.left == null && root.right == null) {
if (sum == root.val) {
return true;
}
return false;
}
return hasPathSum(root.left, sum-root.val) ||
hasPathSum(root.right, sum-root.val);
}
Copyright © 直通硅谷
http://www.zhitongguigu.com/
Given a binary tree, find the maximum path sum.
For this problem, a path is defined as any sequence of nodes from some starting node to any node in the tree along the parent-child connections. The path does not need to go through the root.
5 / \ 4 8 / / \ 11 13 4 / \ \ 7 2 1
maxSum = 7 + 11 + 4 + 5 + 8 + 13 = 48
5 / \ 4 8 / / \ 11 13 4 / \ \ 7 2 1
Copyright © 直通硅谷
http://www.zhitongguigu.com/
Given a binary tree, find the maximum path sum.
For this problem, a path is defined as any sequence of nodes from some starting node to any node in the tree along the parent-child connections. The path does not need to go through the root.
5 / \ -4 -8
5 / \ 4 -8
5 / \ 4 8
5 / \ -4 8
Copyright © 直通硅谷
http://www.zhitongguigu.com/
Given a binary tree, find the maximum path sum.
For this problem, a path is defined as any sequence of nodes from some starting node to any node in the tree along the parent-child connections. The path does not need to go through the root.
Copyright © 直通硅谷
http://www.zhitongguigu.com/
Given a binary tree, find the maximum path sum.
For this problem, a path is defined as any sequence of nodes from some starting node to any node in the tree along the parent-child connections. The path does not need to go through the root.
public static int maxBranchSum(TreeNode root) {
if (root == null) {
return 0;
}
int leftSum = maxBranchSum(root.left);
int rightSum = maxBranchSum(root.right);
int branchMaxSum = root.val + Math.max(0, Math.max(leftSum, rightSum));
return branchMaxSum;
}
Copyright © 直通硅谷
http://www.zhitongguigu.com/
Given a binary tree, find the maximum path sum.
For this problem, a path is defined as any sequence of nodes from some starting node to any node in the tree along the parent-child connections. The path does not need to go through the root.
static int max_sum = Integer.MIN_VALUE;
public static int maxPathSum(TreeNode root) {
if (root == null)
return 0;
max_sum = Integer.MIN_VALUE;
maxBranchSum(root);
return max_sum;
}
public static int maxBranchSum(TreeNode root) {
if (root == null) {
return 0;
}
int leftSum = maxBranchSum(root.left);
int rightSum = maxBranchSum(root.right);
int branchMaxSum = root.val + Math.max(0, Math.max(leftSum, rightSum));
max_sum = Math.max(max_sum,
Math.max(branchMaxSum, leftSum + root.val + rightSum));
return branchMaxSum;
}
Copyright © 直通硅谷
http://www.zhitongguigu.com/
Given a binary tree, find the maximum path sum.
For this problem, a path is defined as any sequence of nodes from some starting node to any node in the tree along the parent-child connections. The path does not need to go through the root.
public static int maxPathSum(TreeNode root) {
if (root == null)
return 0;
int[] max = {Integer.MIN_VALUE};
maxBranchSum(root, max);
return max[0];
}
public static int maxBranchSum(TreeNode root, int[] max) {
if (root == null) {
return 0;
}
int leftSum = maxBranchSum(root.left, max);
int rightSum = maxBranchSum(root.right, max);
int branchMaxSum = root.val + Math.max(0, Math.max(leftSum, rightSum));
max[0] = Math.max(max[0], Math.max(branchMaxSum, leftSum + root.val + rightSum));
return branchMaxSum;
}
Copyright © 直通硅谷
http://www.zhitongguigu.com/
Copyright © 直通硅谷
http://www.zhitongguigu.com/
Copyright © 直通硅谷
http://www.zhitongguigu.com/
Given a 2D board and a word, find if the word exists in the grid.
The word can be constructed from letters of sequentially adjacent cell, where "adjacent" cells are those horizontally or vertically neighboring. The same letter cell may not be used more than once.
For example, given a board,
[
['A','B','C','E'],
['S','F','C','S'],
['A','D','E','E']
]
word = "ABCCED", -> returns true,
word = "SEE", -> returns true,
word = "ABCB", -> returns false.
Copyright © 直通硅谷
http://www.zhitongguigu.com/
public boolean exist(char[][] board, String word) {
if (board.length == 0 || board[0].length == 0)
return false;
boolean[][] flag = new boolean[board.length][board[0].length];
for (int i = 0; i < board.length; i++) {
Arrays.fill(flag[i], false);
}
for (int i = 0; i < board.length; i++) {
for (int j = 0; j < board[0].length; j++) {
if (exist(board, i, j, word, 0, flag))
return true;
}
}
return false;
}
public boolean exist(char[][] board, int x, int y, String word, int index,
boolean[][] flag) {
if (index == word.length())
return true;
if (x < 0 || y < 0 || x >= board.length || y >= board[0].length
|| flag[x][y] || board[x][y] != word.charAt(index))
return false;
int[] dx = {1, 0, -1, 0};
int[] dy = {0, 1, 0, -1};
for (int i = 0; i < 4; i++) {
flag[x][y] = true;
if (exist(board, x+dx[i], y+dy[i], word, index+1, flag))
return true;
flag[x][y] = false;
}
return false;
}
Copyright © 直通硅谷
http://www.zhitongguigu.com/
Given a string s, partition s such that every substring of the partition is a palindrome.
Return all possible palindrome partitioning of s.
Example:
Input: "aab"
Output: [ ["aa", "b"], ["a", "a", "b"] ]
Copyright © 直通硅谷
http://www.zhitongguigu.com/
Given a string s, partition s such that every substring of the partition is a palindrome.
Return all possible palindrome partitioning of s.
Copyright © 直通硅谷
http://www.zhitongguigu.com/
public List<List<String>> partition(String s) {
List<List<String>> results = new ArrayList<>();
partition(results, s, 0, new ArrayList<String>());
return results;
}
public void partition(List<List<String>> results, String s, int start,
List<String> path) {
if (start == s.length()) {
results.add(new ArrayList<>(path));
return;
}
for (int i = start + 1; i <= s.length(); i++) {
String sub = s.substring(start, i);
if (isPalindrome(sub)) {
path.add(sub);
partition(results, s, i, path);
path.remove(path.size() - 1);
}
}
}
public boolean isPalindrome(String s) {
for (int i = 0, j = s.length()-1; i < j; i++, j--) {
if (s.charAt(i) != s.charAt(j))
return false;
}
return true;
}
Copyright © 直通硅谷
http://www.zhitongguigu.com/
Copyright © 直通硅谷
http://www.zhitongguigu.com/
Flatten Binary Tree to Linked List
Tree Traversal:
Preorder Traversal
Inorder Traversal (sort tree)
PostorderTraversal
Method:
recursion( DFS)
iteration (Stack)
Copyright © 直通硅谷
http://www.zhitongguigu.com/