https://arxiv.org/abs/2112.11231
FPTT takes a gradient step to minimize an instantaneous risk function at each time step
straightforward application of FPTT to SNNs fails
Intermediate Losses for Terminal Prediction
with
Hasani et al., 2020
--> time constants are a function of inputs and hidden states
One data point consists of two sequences (x1, x2) of length T and a target label y.
Example:
x1: <0, 0, 0, 1, 0, 0, 1, 0>
x2: <0.1, 0.6, 0.7, 0.2, 0.5, 0.8, 0.4, 0.3>
y: <0, 0, 0, 0.2, 0.2, 0.2, 0.6, 0.6>
ASRNN: Adaptive Spiking RNN
LTC-SRNN: Liquid Time Constant Spiking RNN