Title Text

Prior distributions

P(s\mid M)
P(sM)P(s\mid M)

uniform

P(M \mid s) \sim Dirichlet(\alpha)
P(Ms)Dirichlet(α)P(M \mid s) \sim Dirichlet(\alpha)

We choose the Dirichlet distribution because it is conjugate to the multinomial likelihood

P(M|\{X\},s) \sim Dirichlet(\alpha + f(k,s,\{X\})
P(M{X},s)Dirichlet(α+f(k,s,{X})P(M|\{X\},s) \sim Dirichlet(\alpha + f(k,s,\{X\})

Accounting for phylogenetic relations

We are given phylogenetic tree

We model evolution for each base pair independently, using the Felsenstein model

We assume the motif represented by M, is the ancestor of all current sequences

Can then use a recursive algorithm for computing the likelihood

P_{\text{Fels}}(\{X\}\mid M,s)
PFels({X}M,s)P_{\text{Fels}}(\{X\}\mid M,s)
P_{\text{Fels}}(\{X\}\mid M,s) P(M\mid s)
PFels({X}M,s)P(Ms)P_{\text{Fels}}(\{X\}\mid M,s) P(M\mid s)

Problem

now has a very complicated functional form

Solution: Metropolis-Hastings

Sample using proposal probability

Accept with probability

\min\{1,\frac{P_{\text{Fels}}(\{X\}\mid M',s)\prod\limits_{b\in \{A,C,G,T\}}(M'_b)^f}{P_{\text{Fels}}(\{X\}\mid M,s)P(M\mid s)\prod\limits_{b\in \{A,C,G,T\}}(M_b)^f}\}
min{1,PFels({X}M,s)b{A,C,G,T}(Mb)fPFels({X}M,s)P(Ms)b{A,C,G,T}(Mb)f}\min\{1,\frac{P_{\text{Fels}}(\{X\}\mid M',s)\prod\limits_{b\in \{A,C,G,T\}}(M'_b)^f}{P_{\text{Fels}}(\{X\}\mid M,s)P(M\mid s)\prod\limits_{b\in \{A,C,G,T\}}(M_b)^f}\}
Made with Slides.com