Gustavo Andrés Uribe Gómez
guribe@unicomfacauca.edu.co
+572 8220517 Ext. 130
“Formal ontologies are theories that attempt to give precise mathematical formulations of the properties and relations of certain entities”
(Hofweber, 2012)
“Ontology is the study of the most general classes or categories of everything that exists, their dependencies and relations. An ontology is a set of claims about these classes of beings and the relations among them”
(Schulz S., 2012)
“An ontology defines (or specifies) the concepts, relationships, and other distinctions that are relevant for modeling a domain. The specification of an ontology takes the form of the definitions of representational vocabulary (classes, relations, and so forth) that provide meanings for the vocabulary and formal constraints on its coherent use.”
(Gruber, 1993)
“Ontologies are information artefacts that attempt to give precise formulations of the properties and relations of certain types of entities" (Hofweber, 2012)
Todo esto garantiza inferencias adecuadas
(Rebstock, 2008) modificado por B. Blobel
(WaterMolecule subClassOf hasPhysicalPart some OyxgenAtom)
WaterMolecule subClassOf bearerOf some
( PhysicalMass and molecularWeightQuantityLocated
value 18.01528 ^^xsd:double)
Introducir los ejemplos de la anterior diapositiva en Protégé y visualizar las diferentes sintaxis
Text
( B subClassOf A )
Text
( B equivalentTo A )
( B DisjointWith: A )
( CuerpoMasculino DisjointWith: CuerpoFemenino )
( A DisjointUnionOf: B,C )
( PartículaSubAtómica DisjointUnionOf: Proton , Electron , Neutron )
( C equivalentTo (A and B))
C
( C equivalentTo ( A or B ))
( C equivalentTo (not A))
ObjectProperty: hasParticipant
Domain: Process
Range: MaterialObject
hasAgent subPropertyOf hasParticipant
A subPropertyOf B
A equivalentTo B
A DisjointWith: B
Característica | Definición |
---|---|
Funcional | Para cada x, y1, y2 , si xRy1 y xRy2 entonces y1 = y2 |
FuncionalInversa | Para cada x1, x2, y, si x1Ry y x2Ry, entonces x1 = x2 |
Transitiva | Para cada x,y,z, si xRy y yRz, entonces xRz |
Symetrica | Para cada x,y si xRy entonces yRx |
Asimetrica | Para cada x,y si xRy entonces not yRx |
Reflexiva | Para cada x,xRx. |
Irreflexiva | Para cada x, not xRx. |
Restricciones de valor - Restricciones Universales
( R only C )
( hasProperPhysicalPart only SubAtomicParticle )
Restricciones númericas
( R exactly num C )
( R exactly min C )
( R exactly max C )
( hasPhysicalPart exactly 2 HydrogenAtom )
Valores Concretos
( R value num^^datatype )
( molecularWeightQuantityLocated value 18.01528^^xsd:double)
Lenguaje Atributivo
Frame-based description logic
Lenguaje existencial
Extensiones
Extensiones
Lenguaje diseñado para la descripción de ontologías mediante el uso de la lógica descriptiva, con el objetivo de que el contenido Web sea más accesible por las máquinas
Fuente: w3c
(Stefan, 2012)