Heling Deng
邓鹤凌
Arizona State University
2110.02460
LIGO BHs
Supermassive black holes
SMBHs
...
...
Primordial black holes (PBHs)
LIGO BHs
Supermassive black holes
LIGO black holes
SMBHs
...
...
Astrophysical BHs
Primordial black holes (PBHs)
LIGO BHs
LIGO BH
Supermassive black holes
LIGO black holes
Dark matter
SMBH
...
...
Primordial black holes (PBHs)
Astrophysical BHs
Observational constraints of monochromatic PBHs as DM
PBH binary
PBH binary
free-fall time
Hubble time
When do two neighboring PBHs decouple from Hubble flow?
<
PBH binary
\(y\)
\({x}\)
At dust-radiation equality (\(z_{eq}\sim3000\))
\(\rho\) -- dark matter density
\(M\) -- PBH mass
\(f\) -- fraction of dark matter in PBHs
\(\to\) \(n\sim \bar{x}^{-3} \sim\frac{f\rho}{M}\)
PBH binary
Two neighboring PBHs decouple from Hubble flow when
free-fall time < Hubble time
\(\to\)
\(y\)
\({x}\)
PBH binary
\(a\)
Initial semi-major axis: \(a\sim\frac{x^4}{f\bar{x}^3}\)
Coalescence time given by the Peters formula
P. C. Peters, Phys. Rev. 136, B1224 (1964)
\(t_P \propto \frac{a^4}{M^3}(1-e^2)^{7/2}\)
Initial eccentricity: \(\sqrt{1-e^2}\sim \left(\frac{x}{y}\right)^3\)
\(\propto \frac{x^{37}}{y^{21}}\)
For a random PBH, the probability that a second BH is at \((x, x+\text{d}x)\) and a third BH is at \((y, y+\text{d}y)\) is
\(P(x,y)\text{d}x\text{d}y=\mathcal{O}(10)n^2x^2y^2\text{d}x\text{d}y\)
\(y\)
\({x}\)
PBH binary
\(\to\) For a random PBH, the probability that a merger occurs at \((t, t+\text{d}t)\) is
\(P(t)\text{d}t=\mathcal{O}(10)n^2\int x^2y^2|\frac{\text{d}x}{\text{d}t}|\text{d}y\text{d}t\)
Peters formula: \(t\propto\frac{x^{37}}{y^{21}} \to x\propto\left(\frac{y^{21}}{t}\right)^{1/37}\)
PBH binary
Peters formula: \(t\propto\frac{x^{37}}{y^{21}} \to x\propto\left(\frac{y^{21}}{t}\right)^{1/37}\)
bounds:
curves with constant \(t\)
Integration largely determined by \(y_{max}\)
\(t_2\)
\(t_3\)
\(t_1>t_2>t_3\)
\(P(t)\propto\int x^2y^2|\frac{\text{d}x}{\text{d}t}|\text{d}y\)
PBH binary
\(P(t)\propto\int x^2y^2|\frac{\text{d}x}{\text{d}t}|\text{d}y\)
results:
\(P(t)\approx\frac{0.005f}{t}\)
{
\(\left(\frac{t}{t_c}\right)^{-1/7},\ t > t_c\)
\(\left(\frac{t}{t_c}\right)^{3/37},\ t < t_c\)
where \(t_c\sim 10^{42}f^7\left(\frac{M}{M_\odot}\right)^{-5/3}\ \text{s}\)
curves with constant \(t\)
\(t_2\)
\(t_3\)
\(t_1>t_2>t_3\)
\(t_2=t_c\)
1603.08338, Sasaki, Suyama, Tanaka and Yokoyama
Example:
\(M=10M_\odot, f=0.1\% \to t_c\sim 10^{19}\ \text{s}\)
\(M=100M_\odot, f=0.1\% \to t_c\sim 10^{17}\ \text{s}\)
Peters formula: \(t\propto\frac{x^{37}}{y^{21}} \to x\propto\left(\frac{y^{21}}{t}\right)^{1/37}\)
PBH binary
\(a\)
Coalescence time given by the Peters formula
P. C. Peters, Phys. Rev. 136, B1224 (1964)
\(t_P \propto \frac{a^4}{M^3}(1-e^2)^{7/2}\)
\(e \to 1, t_p \to 0?\)
free-fall time: \(t_{ff}\sim \sqrt{\frac{a^3}{M}}\)
Coalescence time can be estimated by Peters formula only if \(t_P > t_{ff}\)
PBH binary
\(a\)
Peters formula: \(t_P \propto \frac{a^4}{M^3}(1-e^2)^{7/2}\)
free-fall time: \(t_{ff}\sim \sqrt{\frac{a^3}{M}}\)
\(t\sim t_P+t_{ff}\)
Coalescence time should be
PBH binary
Peters formula: \(t= t_P(x,y) \to x=F(y)\)
curves with constant \(t\)
Integration largely determined by \(y_{max}\)
\(t_2\)
\(t_3\)
\(t_1>t_2>t_3\)
\(P(t)\propto\int x^2y^2|\frac{\text{d}x}{\text{d}t}|\text{d}y\)
PBH binary
\(t= t_P+t_{ff} = \frac{3\rho^4}{170M^7}\frac{x^{37}}{y^{21}} + \frac{\rho^{3/2}}{M^2}x^6\)
\(\to y\propto\left(\frac{x^{37}}{M^2\rho^{-3/2}t-x^6}\right)^{1/21}\)
Integration largely determined by \(y_{max}\)
\(t_1>t_2>t_3\)
**PBH binaries could have a significantly larger merger rate "at some point" than previously expected**
\(P(t)\propto\int x^2y^2|\frac{\text{d}x}{\text{d}t}|\text{d}y\)
Peters formula: \(t\propto\frac{x^{37}}{y^{21}} \to x\propto\left(\frac{y^{21}}{t}\right)^{1/37}\)
GWB from PBH mergers
\(\Omega_{GW}(\nu_d)=\frac{\nu_d}{\rho_c}\int N(z)\frac{\text{d}E_{GW}(\nu_s)}{\text{d}\nu_s}|_{\nu_s=\nu_d(1+z)}\text{d}z\)
for PBH merger:
\(N(z)\text{d}z=nz_{eq}^{-3}P(t)\text{d}t\)
\(\frac{\text{d}E_{GW}(\nu_s)}{\text{d}\nu_s}\) from numerical relativity
\(\Omega_{GW}\) has a peak near \(\nu \sim 10^4(M/M_\odot)^{-1}\ \text{Hz}\)
1903.05924, Wang, Terada and Kohri
Examples of \(\Omega_{GW}\) from PBH mergers
\(\Omega_{GW}\) has a peak near \(\nu \sim 10^4(M/M_\odot)^{-1}\ \text{Hz}\)
\(t_1>t_2>t_3\)
**PBH binaries could have a significantly larger merger rate "at some point" than previously expected**
Examples of \(\Omega_{GW}\) from PBH mergers taking into account the "free-fall time" effect
More stringent constraints on PBHs if we don’t see GWB in the future
Observational constraints of monochromatic PBHs as DM
Observational constraints of large PBHs as DM
PBHs absorb ambient gas and dark matter after dust-radiation equality and could grow by orders of magnitude
However, details are still unclear
We consider accretion from \(z=30\) to \(z=10\) (\(t\sim 10^{16}\ \text{s}\))
\(P(t)\approx\frac{0.005f}{t}\)
{
\(\left(\frac{t}{t_c}\right)^{-1/7}-f\left(\frac{t}{t_{last}}\right)^{3/8},\ t > t_c\)
\(\left(\frac{t}{t_c}\right)^{3/37},\ t < t_c\)
PBH merger rate
where \(t_{last}\sim 10^{42}\left(\frac{M}{M_\odot}\right)^{-5/3}\ \text{s}\)
Example: for \(M=100M_\odot\), we have \(t_{last}\sim 10^{39}\ \text{s}\)
\(P(t_{last})=0\)
In the presence of accretion at \(t\sim 10^{16}\ \text{s}\), the change in black hole mass alters the binary orbit, and thus the PBH merger rate
\(a\)
\(\frac{\dot{a}}{a}+3\frac{\dot{M}}{M}=0\)
\(t_P\propto \frac{a^4}{M^3}\)
Coalescence time decreases from \(t\) to
\(t_{acc}=\left(\frac{M_f}{M_i}\right)^{-15}t\)
\(\to a \propto M^{-3}\)
eccentricity remains const
2005.05641, De Luca, Franciolini, Pani and Riotto
could be tiny!
Example: for \(M=100M_\odot\), we have \(t_{last}\sim 10^{39}\ \text{s}\)
for \(M_i=100M_\odot\) and \(M_f=10000M_\odot\), we have \(t_{acc}=\left(\frac{M_f}{M_i}\right)^{-15}t_{last}=10^9\ \text{s}\)!
**Aggregated mergers during accretion**
Examples of \(\Omega_{GW}\) taking into account mass accretion
Conclusions and discussion