Hugo SIMON,
PhD student supervised by
Arnaud DE MATTIA and François LANUSSE
2026/01/15
Hugo SIMON,
PhD student supervised by
Arnaud DE MATTIA and François LANUSSE
2026/01/15
Hugo SIMON,
PhD student supervised by
Arnaud DE MATTIA and François LANUSSE
2025/11/27
Hugo SIMON,
PhD student supervised by
Arnaud DE MATTIA and François LANUSSE
CoBALt, 2025/06/30
Hugo SIMON,
PhD student supervised by
Arnaud DE MATTIA and François LANUSSE
CoBALt, 2025/06/30
Hugo SIMON,
PhD student supervised by
Arnaud DE MATTIA and François LANUSSE
Sesto, 2025/07/17
Hugo SIMON,
PhD student supervised by
Arnaud DE MATTIA and François LANUSSE
PNG Meeting, 2025/06/18
$$\frac{H}{H_0} = \sqrt{\Omega_r + \Omega_b + \Omega_c+ \Omega_\kappa + \Omega_\Lambda}$$
instantaneous expansion rate
energy content
Cosmological principle + Einstein equation
+ Inflation
\(\delta_L \sim \mathcal G(0, \mathcal P)\)
\(\sigma_8:= \sigma[\delta_L * \boldsymbol 1_{r \leq 8}]\)
initial field
primordial power spectrum
std. of fluctuations smoothed at \(8 \text{ Mpc}/h\)
\(\Omega := \{ \Omega_m, \Omega_\Lambda, H_0, \sigma_8, f_\mathrm{NL},...\}\)
inference
\(P\)
\(\Omega\)
\(\delta_L\)
\(\delta_g\)
\(\Omega := \{ \Omega_m, \Omega_\Lambda, H_0, \sigma_8, f_\mathrm{NL},...\}\)
\(\Omega\)
\(\delta_L\)
\(\delta_g\)
inference
inference
\(\Omega := \{ \Omega_m, \Omega_\Lambda, H_0, \sigma_8, f_\mathrm{NL},...\}\)
\(\Omega\)
\(\delta_L\)
\(\delta_g\)
\(P\)
\(\Omega := \{ \Omega_m, \Omega_\Lambda, H_0, \sigma_8, f_\mathrm{NL},...\}\)
\(\Omega\)
\(\delta_L\)
\(\delta_g\)
inference
\(128^3\) PM on 8GPU:
4h MCLMC vs. \(\geq\) 80h HMC
Fast & differentiable model with
\(\Omega := \{ \Omega_m, \Omega_\Lambda, H_0, \sigma_8, f_\mathrm{NL},...\}\)
inference
\(P\)
\(\Omega\)
\(\delta_L\)
\(\delta_g\)
\(\Omega := \{ \Omega_m, \Omega_\Lambda, H_0, \sigma_8, f_\mathrm{NL},...\}\)
\(\Omega\)
\(\delta_L\)
\(\delta_g\)
inference
Field-level inference
Summary stat inference
\(\Omega\)
\(s\)
\(\delta_g\)
\(\Omega\)
\(\delta_L\)
\(s\)
marginalize
condition
marginalize
\(\Omega\)
\(s\)
\(\delta_g\)
\(\Omega\)
\(\delta_L\)
condition
Cosmo model
\(\mathrm{p}(\Omega,s)\)
\(\mathrm{p}(\Omega \mid s)\)
\(\Omega\)
\(\delta_g\)
\(\mathrm{p}(\Omega,\delta_L,\delta_g, s)= \mathrm{p}(s \mid \delta_g) \, \mathrm{p}(\delta_g \mid \Omega,\delta_L)\, \mathrm{p}(\delta_L \mid \Omega)\, \mathrm{p}(\Omega)\)
\(\mathrm{p}(\Omega,\delta_L \mid \delta_g)\)
\(\mathrm{p}(\Omega \mid \delta_g)\)
\(\delta_g\)
\(\Omega\)
\(\delta_L\)
\(s\)
Cosmo model
Problem:
The Problem:
The Promise:
Field-level inference
Summary stat inference
Inferring jointly cosmology, bias parameters, and initial matter field allows full universe history reconstruction
Fast and differentiable model thanks to (\(\texttt{NumPyro}\) and \(\texttt{JaxPM}\))
Fast and differentiable model with
+ field-level preconditioning = \(128^3\) PM inference in 4h on a single GPU node
MicroCanonical sampling
+
Fast and differentiable model with
+ field-level preconditioning = \(128^3\) PM inference in 4h on a single GPU node
MicroCanonical sampling
+
\((\boldsymbol q, \boldsymbol p)\)
\(\delta(\boldsymbol x)\)
\(\delta(\boldsymbol k)\)
paint*
read*
fft*
ifft*
fft*
*: differentiable, e.g. with via \(\texttt{JaxPM}\), in \(\mathcal O(n \log n)\)
apply forces
to move particles
solve Vlasov-Poisson
to compute forces
\(\begin{cases}\dot {\boldsymbol q} \propto \boldsymbol p\\ \dot{\boldsymbol p} = \boldsymbol f \end{cases}\)
\(\begin{cases}\nabla^2 \phi \propto \delta\\ \boldsymbol f = -\nabla \phi \end{cases} \implies \boldsymbol f \propto \frac{i\boldsymbol k}{k^2} \delta\)
𝓐 𝓭𝓻𝓾𝓷𝓴 𝓶𝓪𝓷 𝔀𝓲𝓵𝓵 𝓯𝓲𝓷𝓭 𝓱𝓲𝓼 𝔀𝓪𝔂 𝓱𝓸𝓶𝓮, 𝓫𝓾𝓽 𝓪 𝓭𝓻𝓾𝓷𝓴 𝓫𝓲𝓻𝓭 𝓶𝓪𝔂 𝓰𝓮𝓽 𝓵𝓸𝓼𝓽 𝓯𝓸𝓻𝓮𝓿𝓮𝓻 (\(\mathrm p \approx 0.66\))
🌸 𝓢𝓱𝓲𝔃𝓾𝓸 𝓚𝓪𝓴𝓾𝓽𝓪𝓷𝓲
\(-\nabla\)
\(d \approx 1\)
🏠
🚶♀️
To maintain constant move-away probability, step-size \(\simeq d^{-1/2}\)
\(d \gg 1\)
🪺
🐦
Recipe😋 to sample from \(\mathrm p \propto e^{-U}\)
gradient guides particle toward high density sets
scales poorly with dimension
must average over all energy levels
Hamiltonian Monte Carlo (e.g. Neal2011)
Recipe😋 to sample from \(\mathrm p \propto e^{-U}\)
single energy/speed level
let's try avoiding that
gradient guides particle toward high density sets
MicroCanonical HMC (Robnik+2022)
Hamiltonian Monte Carlo (e.g. Neal2011)
MicroCanonical HMC (Robnik+2022)
Local-type PNG is constrained by the induced scale-dependent bias
\(\phi_{\mathrm{NL}}=\phi+{\color{purple}f_{\mathrm{NL}}}\phi^{2}\)
\(\delta_g(\boldsymbol k)\simeq\left(b_{1}+ b_\phi {\color{purple}f_\mathrm{NL}}k^{-2} \right) \delta_L(\boldsymbol k)\)
Local-type PNG is mostly constrained by the induced scale-dependent bias
\(\phi_{\mathrm{NL}}=\phi+{\color{purple}f_{\mathrm{NL}}}\phi^{2}\)
\(\delta_g(\boldsymbol k)\simeq\left(b_{1}+ b_\phi {\color{purple}f_\mathrm{NL}}k^{-2} \right) \delta_L(\boldsymbol k)\)
Ideal first demonstration for FLI
3 PNG parameters, 2 options:
Fast and differentiable model with
Fast and differentiable model with
In practice, discreteness reduction: oversampling, deconvolution, interlacing, kernel choice (NUFFT-like)
\(k_\mathrm{evolve}\)
(LPT, bias)
\(k_\mathrm{paint}\)
\(k_\mathrm{final}\)
\(k_\mathrm{init}\)
\(k_\mathrm{evolve}\)
(LPT, bias)
\(k_\mathrm{paint}\)
\(k_\mathrm{final}\)
\(k_\mathrm{init}\)
In practice, discreteness reduction: oversampling, deconvolution, interlacing, kernel choice (NUFFT-like, see e.g. Stadler+2024)
3 PNG parameters, 2 options:
$$\sqrt{P_{\delta} / P_{\delta^\mathrm{true}}}$$ = amplitude info
$$P_{\delta,\delta^\mathrm{true}} / \sqrt{P_{\delta}P_{\delta^\mathrm{true}}}$$ = phase info
EFT says \({\color{purple}\sigma_0}(1+{\color{purple}\sigma_\delta}\delta_g^\mathrm{det})\)
Poisson \(\simeq \sigma_0=\sigma_\delta=1\), but fit shows sub-Poisson
For positivity, we take:
\({\color{purple}\sigma_0}\ln(1+e^{1+{\color{purple}\sigma_\delta}\delta_g^\mathrm{det}})\)
Quite Gaussian for \(k_\mathrm{nyq} \leq 0.15 h/ \mathrm{Mpc}\)👍
So \(\delta_g \sim \mathcal N(\delta_g^\mathrm{det},\, {\color{purple}❓})\)
EFT says \({\color{purple}\sigma_0}(1+{\color{purple}\sigma_{2}}k^2 + {\color{purple}\sigma_{\mu,2}}(\mu k)^2)\)
Negligible for currently probed scales.
If not, can be implemented in real domain with sparse matrices.
Galaxy stochasticity = \(\delta_g^\mathrm{true} -\delta_g^\mathrm{det}\), and we take \(\delta_g^\mathrm{det}\) to be EFT best fit.
\(\sigma^2(\delta^\mathrm{det})\)
\((2\ \mathrm{Gpc}/h)^3,\, \operatorname{dim}(\delta_L) = 96^3,\,k_\mathrm{nyq} = 0.1 h / \mathrm{Mpc}\)
\((2\ \mathrm{Gpc}/h)^3,\, \operatorname{dim}(\delta_L) = 48^3\), \(k_\mathrm{nyq} = 0.05 h / \mathrm{Mpc}\)
PRELIMINARYInfer the initial conditions and \(\sigma_8\)
On AbacusSummit + HOD mock (\(f_\mathrm{NL}= 0\))
For \(k_\mathrm{nyq} = 0.05\ h/\mathrm{Mpc}\), inference compatible with \(f_\mathrm{NL}= 0\).
TBD: posterior calibration tests
\((2\ \mathrm{Gpc}/h)^3,\, \mathrm{LRG}\, z=0.8\)
PRELIMINARYOn AbacusSummit + HOD mock (\(f_\mathrm{NL}= 0\))
For \(k_\mathrm{nyq} = 0.1\ h/\mathrm{Mpc}\),
\(f_\mathrm{NL} b_\phi\) compatible, but not \(f_\mathrm{NL} b_{\phi \delta}\) nor \(f_\mathrm{NL}\)
For \(k_\mathrm{nyq} = 0.05\ h/\mathrm{Mpc}\), inference compatible with \(f_\mathrm{NL}= 0\).
TBD: posterior calibration tests
\((2\ \mathrm{Gpc}/h)^3,\, \mathrm{LRG}\, z=0.8\)
PRELIMINARYOn \(f_\mathrm{NL}\neq 0\) FastPM + HOD mocks
PRELIMINARY\((2.76\ \mathrm{Gpc}/h)^3,\,k_\mathrm{nyq} = 0.073 h/ \mathrm{Mpc},\\ \mathrm{QSO}\, z=1,\, \operatorname{dim}(\delta_L) = 96^3\)
NOW: validation on AbacusSummit (DESI reference sims) and FastPM + HOD mocks
\((2.76\ \mathrm{Gpc}/h)^3,\,k_\mathrm{nyq} = 0.073 h/ \mathrm{Mpc},\\ \mathrm{QSO}\, z=1,\, \operatorname{dim}(\delta_L) = 96^3\)
PNG, ideal first demonstration of FLI:
PRELIMINARYNext steps:
In prep: Simon+2025
On \(f_\mathrm{NL}\neq 0\) FastPM + HOD mocks (courtesy of Edmond)
PRELIMINARY\((2.76\ \mathrm{Gpc}/h)^3,\,k_\mathrm{nyq} = 0.036 h/ \mathrm{Mpc},\\\, \mathrm{QSO}\, z=1,\,\operatorname{dim}(\delta_L) = 48^3\)
On \(f_\mathrm{NL}\neq 0\) FastPM + HOD mocks (courtesy of Edmond)
PRELIMINARY\((2.76\ \mathrm{Gpc}/h)^3,\,k_\mathrm{nyq} = 0.073 h/ \mathrm{Mpc},\\ \mathrm{QSO}\, z=1,\, \operatorname{dim}(\delta_L) = 96^3\)
Next steps:
On \(f_\mathrm{NL}\neq 0\) FastPM + HOD mocks (courtesy of Edmond)
PRELIMINARY\((2.76\ \mathrm{Gpc}/h)^3,\,k_\mathrm{nyq} = 0.073 h/ \mathrm{Mpc},\\ \mathrm{QSO}\, z=1,\, \operatorname{dim}(\delta_L) = 96^3\)
PRELIMINARY\((2.76\ \mathrm{Gpc}/h)^3,\,k_\mathrm{nyq} = 0.036 h/ \mathrm{Mpc},\\\, \mathrm{QSO}\, z=1,\,\operatorname{dim}(\delta_L) = 48^3\)
Next steps:
PRELIMINARY\(k_\mathrm{max} \approx 0.04\ h/\mathrm{Mpc}\)
\(\sigma[f_\mathrm{NL}] \approx 20\), consistent with power spectrum analysis (Chaussidon+2024)
Roadmap:
| Part | Implementation | Validation |
|---|---|---|
| MCMC | ✅️ | ✅️ |
| LSS formation | ✅️ | ✅️ |
| Galaxy bias | ✅️ | ✅️ |
| Galaxy stochasticity | ✅️ | 🗘 |
| Selection | ✅️ | 🗘 |
| Lightcone | ✅️ | |
| Integral Constraint | ✅️ | |
| Imaging |
Field-level implementation is
more direct than for P+B analyses
Less relevant for PNG:
\(\Delta z\) due to broad QSO bands
FA damping at small angles
RIC damping on large scales
Imaging templates
Field-level implementation is
more direct than for P+B analyses
Less relevant for PNG:
\(\Delta z\) due to broad QSO bands
FA damping at small angles
RIC damping on large scales
Imaging templates
PRELIMINARY\(k_\mathrm{max} \approx 0.04\ h/\mathrm{Mpc}\)
FLI on LRG SGC footprint with lightcone, survey selection, and RIC
\(k_\perp\) might be enough, espec. for DR2
FoG+broad QSO bands
\((k\mu)^2\) might not be enough
\(k_\perp\) might be enough, espec. for DR2
FoG+broad QSO bands
\((k\mu)^2\) might not be enough
Thank you!
$$\begin{align*}w_g&=1+{\color{purple}b_{1}}\,\delta_{\rm L}+{\color{purple}b_{2}}\delta_{\rm L}^{2}+{\color{purple}b_{s^2}}s^{2}+ {\color{purple}b_{\nabla^2}} \nabla^2 \delta _{\rm L}\\&\quad\quad\! + {\color{purple}b_\phi f_{\rm NL}} \phi + {\color{purple} b_{\phi\delta} f_{\rm NL}} \phi \delta_{\rm L}\\\Delta \boldsymbol q_\parallel &= H^{-1} \dot{\boldsymbol q}_\parallel + {\color{purple}b_{\nabla_\parallel}} \nabla_\parallel \delta_\mathrm{L}\end{align*}$$
\(\phi_{\mathrm{NL}}=\phi+{\color{purple}f_{\mathrm{NL}}}\phi^{2}\)
\(\boldsymbol q_\mathrm{LPT} \simeq \boldsymbol q_\mathrm{in} + \Psi_\mathrm{LPT}(\boldsymbol q_\mathrm{in}, z(\boldsymbol q_\mathrm{in}))\)
one-shot 2LPT light-cone
\(n_g^\mathrm{obs}(\boldsymbol q) \approx (1+\delta_g(\boldsymbol q))\, {\color{purple}\bar n_g(\,r)}\, {\color{blue}W(\boldsymbol q)}\, (1+{\color{purple}\beta_i} {\color{green}T^i(\theta)})\)
RIC relax + selection + imag. templates
\(\delta_g \sim \mathcal N(\delta_g^\mathrm{det}, \sigma^2)\) with
\(\sigma(k) = {\color{purple}\sigma_0}(1+{\color{purple}\sigma_2} k^2 + {\color{purple}\sigma_{\mu2}}(k\mu)^2)\)
EFT-based modeling, many scale cuts alleviating discretization effects (see Stadler+2024)
Radial Integral Constraint
\(\delta_g \propto n_g - \braket{n_g}\approx n_g - \bar n_g(r)\)
i.e. impose \(\bar \delta_g(r) = 0\)
Global Integral Constraint
\(\delta_g \propto n_g - \braket{n_g} \approx n_g - \bar n_g\)
i.e. impose \(\bar \delta_g = 0\)
Inferring jointly cosmology, bias parameters, and initial matter field allows full universe history reconstruction
million-dimensional inference:
4h on 1 GPU node vs. days/weeks for other codes
= NUTS within Gibbs
= auto-tuned HMC
= adjusted MCHMC
= unadjusted Langevin MCHMC
10 times less evaluations required
Unadjusted microcanonical sampler outperforms any adjusted sampler
10 times less evaluations required
Mildly dependent with respect to formation model and volume
Probing smaller scales could be harder
MCLMC sampler + field-level preconditioning assuming a linear Kaiser model:
4h on a 8GPU-node for \(128^3\) PM inference
reducing stepsize rapidly brings bias under Monte Carlo error