Getting started with
Getting started with
weight
height
weight
height
weight
height
weight
height
NN
Differencing
CNNS: Learn Filters ( Learn to extract features)
Agenda
5 Minute Introduction to......
Pre-reqs
Matlab 2020b+
Deep Learning Tool box
Check if u have this
Getting Started
Getting Started
Getting Started
NN
Getting Started
NN
They are universal approximators!!!!!!!!!!!
They are universal approximators!!!!!!!!!!!
Why Deep Learning??
Why Deep Learning??
Why Deep Learning??
Deep Learning Systems
Getting Started
NN
Data
labels
Getting Started
NN
Data
labels
class NaturalSceneClassification(ImageClassificationBase):
def __init__(self):
super().__init__()
self.network = nn.Sequential(
nn.Conv2d(3, 32, kernel_size = 3, padding = 1),
nn.ReLU(),
nn.Conv2d(32,64, kernel_size = 3, stride = 1, padding = 1),
nn.ReLU(),
nn.MaxPool2d(2,2),
nn.Conv2d(64, 128, kernel_size = 3, stride = 1, padding = 1),
nn.ReLU(),
nn.Conv2d(128 ,128, kernel_size = 3, stride = 1, padding = 1),
nn.ReLU(),
nn.MaxPool2d(2,2),
nn.Conv2d(128, 256, kernel_size = 3, stride = 1, padding = 1),
nn.ReLU(),
nn.Conv2d(256,256, kernel_size = 3, stride = 1, padding = 1),
nn.ReLU(),
nn.MaxPool2d(2,2),
nn.Flatten(),
nn.Linear(82944,1024),
nn.ReLU(),
nn.Linear(1024, 512),
nn.ReLU(),
nn.Linear(512,6)
)
def forward(self, xb):
return self.network(xb)
Getting Started
NN
Data
labels
class NaturalSceneClassification(ImageClassificationBase):
def __init__(self):
super().__init__()
self.network = nn.Sequential(
nn.Conv2d(3, 32, kernel_size = 3, padding = 1),
nn.ReLU(),
nn.Conv2d(32,64, kernel_size = 3, stride = 1, padding = 1),
nn.ReLU(),
nn.MaxPool2d(2,2),
nn.Conv2d(64, 128, kernel_size = 3, stride = 1, padding = 1),
nn.ReLU(),
nn.Conv2d(128 ,128, kernel_size = 3, stride = 1, padding = 1),
nn.ReLU(),
nn.MaxPool2d(2,2),
nn.Conv2d(128, 256, kernel_size = 3, stride = 1, padding = 1),
nn.ReLU(),
nn.Conv2d(256,256, kernel_size = 3, stride = 1, padding = 1),
nn.ReLU(),
nn.MaxPool2d(2,2),
nn.Flatten(),
nn.Linear(82944,1024),
nn.ReLU(),
nn.Linear(1024, 512),
nn.ReLU(),
nn.Linear(512,6)
)
def forward(self, xb):
return self.network(xb)
Workflow in DeepLearning Network Designer App
Workflow in DeepLearning Network Designer App
digitDatasetPath = fullfile(matlabroot,'toolbox','nnet','nndemos', ...
'nndatasets','DigitDataset');
imds = imageDatastore(digitDatasetPath, ...
'IncludeSubfolders',true, ...
'LabelSource','foldernames');