How to define a 

compositional logic

Ingmar Dasseville

Don't force others to repeat your work

DTAI Seminar

09/11/2015

Why?

Adding stuff to an existing logic is hard!

  • Aggregates in ASP
  • Definitions
  • ...

Original motivation: Templates for IDP

This talk

Lots of Haskell Code

  • Forces rigorous definitions
  • Represents definitions in papers
  • Syntax Irrelevant

What is compositional?

Reformulations

Three Valued Logics

Logic = 

   Syntax

+ Semantics

Propositional Logic

data PLogic = Prop String 
            | And PLogic PLogic 
            | Or PLogic PLogic
            | Not PLogic

type Structure = Map String Bool

eval :: Structure -> PLogic -> Bool
eval s (Prop a) = a `isTrueIn` s
eval s (And a b) = (eval s a) && (eval s b)
eval s (Or a b) = (eval s a) || (eval s b)
eval s (Not a) = not (eval s a)

Is this composable?

Frege's Principle

The meaning of a complex expression is determined by the meanings of its constituent expressions and the rules used to combine them. 

Wikipedia: Principle of compositionality

Succes?

data PLogic = Prop String 
            | And PLogic PLogic 
            | Or PLogic PLogic
            | Not PLogic

type Structure = Map String Bool

eval :: Structure -> PLogic -> Bool
eval s (Prop a) = a `isTrueIn` s
eval s (And a b) = (eval s a) && (eval s b)
eval s (Or a b) = (eval s a) || (eval s b)
eval s (Not a) = not (eval s a)
  • Frege: YES

  • New language constructs: NO

Let's make it worse...

\forall x : (a \lor x) \land (b \lor \lnot x)
x:(ax)(b¬x)\forall x : (a \lor x) \land (b \lor \lnot x)

Quantified Boolean Formulas

(QBF)

Propositional Logic + 

Quantification over boolean domain

QBF Logic

data QBFLogic = Prop String 
            | And QBFLogic QBFLogic 
            | Or QBFLogic QBFLogic
            | Not QBFLogic
            | Forall String QBFLogic

eval :: Structure -> QBFLogic -> Bool
eval s (Prop a) = a `isTrueIn` s
eval s (And a b) = (eval s a) && (eval s b)
eval s (Or a b) = (eval s a) || (eval s b)
eval s (Not a) = not (eval s a)
eval s (Forall x p) = (eval sTrue p) && (eval sFalse p)
			where
				sTrue = s `add` (x,True)
				sFalse = s `add` (x,False)
  • Frege: NO

  • New language constructs: NO

What is compositional?

Reformulations

Three Valued Logics

Frege

Meaning of sentence is a function (Structure Bool)

New language constructs

Logic =

Set of Language Constructs

 

Language Construct =

Syntax + Semantics

INFON

Requirements

Frege Compliant QBF

type Infon = Structure -> Bool

eval ::  QBFLogic -> Infon
eval (And a b) = liftM2 (&&) (eval a) (eval b)
eval (Or a b) = liftM2 (||) (eval a) (eval b)
eval (Not a) = liftM (not) (eval a)
eval (Forall x p) = liftM2 (&&) infonTrue infonFalse
        where
            infonTrue :: Infon
            infonTrue = (\s -> (eval p) (s `add` (x,True))
            infonFalse :: Infon
            infonFalse = (\s -> (eval p) (s `add` (x,False))

liftM2 :: (Bool -> Bool -> Bool)
        -> (Infon -> Infon -> Infon)

Language Constructs: Data Types

data And a = And a a 
data Prop a = Prop String

Logic = MyLang (MyLang (MyLang(MyLang ...

type (+) = Coproduct
type MyLang a = (Prop + And) a

We need union between And and Prop

type MyLogic = Fix MyLang

Intermezzo: Fix of a datatype

data Container a = S a | Empty 
type Peano = Fix Container 
--Peano =  Container (Container (Container ...

zero = Fix Empty -- 0
one = Fix (S (Fix Empty)) -- S(0)
two = Fix (S (Fix (S (Fix Empty)))) -- S(S(0))

Intermezzo: Catamorphism

eval :: Container Int -> Int
eval Empty = 0
eval (S a) = 1+a

evalPeano :: Peano -> Int
evalPeano = cata eval

cata :: (con a -> a) -> Fix con -> a

> let two = Fix (S (Fix (S (Fix Empty)))) 
> evalPeano two -- eval (S (eval (S (eval Empty))))
2

Frege-compliant function  catamorphism!

Catamorphisms replace Fix constructor with a function

Semantics

class Semantics a where
    eval :: a -> Infon
instance Semantics (And Infon)  where
    eval (And a b) = liftM2 (&&) a b
instance Semantics (Prop a)  where
    eval (Prop a) = (\s -> a `isTrueIn` s)

⇑Interface for Semantics

Semantics for (Fix (Prop+And))?

Semantics for

Fix (Prop+And)

instance (Semantics (construct Infon),_) 
                    => Semantics (Fix construct) where
    eval :: (Fix construct) -> Infon
    eval = cata (eval :: (construct Infon) -> Infon)

instance (  Semantics (construct1 Infon), 
            Semantics (construct2 Infon)) 
             => Semantics ((construct1+construct2) Infon) where

    eval =  (eval :: (construct1 Infon) -> Infon)
                `coproduct` 
            (eval :: (construct2 Infon) -> Infon)

Some Logics

type PropLogic = Fix (Prop + And + Or + Not)
type QBFLogic = Fix (Prop + And + Or + Not + Forall)


type FO = Fix (Prop + And + Or + Not + Quantify)
type FODOT = FO + (WellFounded FO)

What is compositional?

Reformulations

Three Valued Logics

Bad News

We want (inductive) definitions

Infons are insufficient

TRINFON

Well founded semantics is three valued

type TriBool = Unknown | False | True
type Trinfon = Structure -> TriBool

Good

More Good News

There is a general way to extend an

Infon ⇒ TrInfon

and :: TriBool -> TriBool -> TriBool
and True a = a
and a True = a
and False a = False
and a False = False
and _ _ = Unknown

applied to "And" this results in:

Finally!

Using TrInfons we can construct:

  • FO(.)
  • ASP
  • ...

Templates!

{transitiveClosure(P,Q) ← 
    {Q(x,y) ← P(x,y).
     Q(x,y) ← (∃ z: Q(x,z)∧Q(z,y)).
    }. 
}

What is compositional?

Reformulations

Three Valued Logics

Frege's principle

New Language Constructs

Fixpoint of Coproduct

Catamorphisms

TrInfon

Inductive Definitions

The end

Templates

Made with Slides.com