2024年3月31日, 11:40-11:55
2024年第一届音频波段引力波天文学研讨会坛 | 广东 · 珠海
王赫 (He Wang)
hewang@ucas.ac.cn
中国科学院大学 · 国际理论物理中心(亚太地区)
中国科学院大学 · 引力波宇宙太极实验室(北京/杭州)
On behalf of the LIGO-VIRGO-KAGRA collaborations
Pioneering works utilizing CNN
AI for Science → AI for GW Astronomy
Exported: Oct, 2023 (in preparation)
PRL, 2018, 120(14): 141103.
PRD, 2018, 97(4): 044039.
Introduction to Speed and Efficiency
The Need for Integration (an AI pipeline!)
Case study: Pipeline
Aframe
S.S. Chaudhary, et al. arXiv:2308.04545
Challenges and Future Directions
Case study: Pipeline
Aframe
OpenLVEM, June 08, 2023. Low Latency UPDATE.
Beyond Speed: Generalization and Discovery in GW Detection
Real-time GW searches for GW150914
He Wang, et al. PRD 101, 10 (2020): 104003
He Wang, et al. MLST. 5, 1 (2024): 015046.
Challenges in Model Interpretability
Alfaidi & Messerger. arXiv:2402.04589
Menéndez-Vázquez A, et al. PRD 2021
He Wang, et al. MLST. 5, 1 (2024): 015046.
Exploring Beyond General Relativity
Harsh Narola, et al. “Beyond General Relativity: Designing a Template-Based Search for Exotic Gravitational Wave Signals.” PRD 107, 2 (2023): 024017.
Yu-Xin Wang, et al. "Draft in Progress"
iFAR [years]
iFAR [years]
Sensitivity dfistance [Mpc]
DINGO: A Leap Forward
進撃のnflow model in GW inference area.
2002.07656: 5D toy model [1] (PRD)
2008.03312: 15D binary black hole inference [1] (MLST)
2106.12594: Amortized inference and group-equivariant neural posterior estimation [2] (PRL)
2111.13139: Group-equivariant neural posterior estimation [2]
2210.05686: Importance sampling [2] (PRL)
2211.08801: Noise forecasting [2] (PRD)
[1]. https://github.com/stephengreen/lfi-gw (published @2020)
[2]. https://github.com/dingo-gw/dingo (published @2023.03)
Simulation-Based Inference (SBI)
PRL 127, 24 (2021) 241103.
PRL 130, 17 (2023) 171403.
Real-time gravitational wave science with neural posterior estimation
Sampling with prior knowledge for high-dimensional gravitational wave data analysis
He Wang, et al. Big Data Min. Anal. (2021)
PRD 108, 4 (2023): 044029.
Neural Posterior Estimation with Guaranteed Exact Coverage: The Ringdown of GW150914
arXiv:2310.13405, LIGO-P2300306
Cosmological Inference using Gravitational Waves and Normalising Flows
PRL 131, 17 (2023): 171403.
Angular Power Spectrum of Gravitational-Wave Transient Sources as a Probe of the Large-Scale Structure
Fast Parameter Inference on Pulsar Timing Arrays with Normalizing Flows
arXiv:2310.12209
PRD 108, 4 (2023): 044029.
Appreciating the Ringdown Overtone Test
Exploring Stochastic Gravitational Wave Background with AI
Exploring Stochastic Gravitational Wave Background with AI
Abbott R, et al. PRD 104, 2 (2021): 022004.
Nature Physics 18, 1 (2022): 9–11
On-going
Insights
Nature Physics 18, 1 (2022): 9–11
On-going
Insights
for _ in range(num_of_audiences):
print('Thank you for your attention! 🙏')
For further reference or to cite the work presented today,
please cite this silde: https://slides.com/iphysresearch/2024mar_bnuz
AI or Bayes
Text-to-image
"A running dog"
AI or Bayes
Text-to-image
"A corgi running on the street"
A picture is worth a thousand words.
A fraction of a thousand words.
Credit: 李宏毅
"A running dog"