1
2
3
4
2
8
13
7
6
$$G=(V,E)$$
2
4
3
2
1
8
13
7
6
2
6
7
13
8
4
3
2
1
6
7
13
8
2
4
3
2
1
6
7
13
8
2
4
3
2
1
6
7
13
8
2
4
3
2
1
6
7
13
8
2
4
3
2
1
6
7
13
8
2
4
3
2
1
6
7
13
8
2
4
3
2
1
6
7
13
8
2
4
3
2
1
6
7
13
8
2
4
3
2
1
$$G=(V,E)$$
\(u\)
\(v\)
\(V-S\)
\(S\)
\(e\)
\(v\)
\(u\)
\(S\)
\(V-S\)
\(u'\)
\(v'\)
a
b
c
d
e
\(e\)
\(e'\)
\(v\)
\(u\)
\(S\)
\(V-S\)
\(u'\)
\(v'\)
a
b
c
d
e
\(e\)
\(e'\)
\(v\)
\(u\)
\(S\)
\(V-S\)
\(u'\)
\(v'\)
a
b
c
d
e
\(e\)
\(e'\)
\(v\)
\(u\)
\(S\)
\(V-S\)
\(u'\)
\(v'\)
a
b
c
d
e
\(e\)
\(e'\)
a
d
b
g
f
c
e
5
7
9
15
6
8
11
9
7
8
5
\(S = \{a\}\)
a
d
b
g
f
c
e
5
7
9
15
6
8
11
9
7
8
5
\(S = \{a,d\}\)
a
d
b
g
f
c
e
5
7
9
15
6
8
11
9
7
8
5
\(S = \{a,d,f\}\)
a
d
b
g
f
c
e
5
7
9
15
6
8
11
9
7
8
5
\(S = \{a,d,f,b\}\)
a
d
b
g
f
c
e
5
7
9
15
6
8
11
9
7
8
5
\(S = \{a,d,f,b,e\}\)
a
d
b
g
f
c
e
5
7
9
15
6
8
11
9
7
8
5
\(S = \{a,d,f,b,e,c\}\)
a
d
b
g
f
c
e
5
7
9
15
6
8
11
9
7
8
5
\(S = \{a,d,f,b,e,c,g\}\)
\(G=(V,E)\)
For any path \(p\), we call a \(Bottleneck(p)\) is an edge \(e \in p\)
which \(W(e)\) is maximum
A Minimum Bottleneck Path from \(u\) to \(v\)
is a path \(p\) from \(u\) to \(v\) which \(W(Bottleneck(p))\) is minimum
4
8
7
9
11
8
6
15
9
7
5
e
c
f
g
b
d
a
4
8
7
9
11
8
6
15
9
7
5
e
c
f
g
b
d
a