April 25, 2023
\[y = Be^{-A\mu} + v,~v \sim \mathcal{N}(0, K)\]
forward diffusion on signal
\[\mu_t = \alpha(t)\mu + \beta(t)z,~z \sim \mathcal{N}(0, K)\]
forward diffusion on measurement
\[Be^{-A\mu_t} = Be^{-A\alpha(t)\mu}e^{-A\beta(t)z}\]
\[y_t = Be^{-A\mu_t} + e^{-A\beta(t)z} v = e^{-A\beta(t)z}\left[Be^{-A\alpha(t)\mu} + v\right]\]
\[y = Be^{-A\mu} + v,~v \sim \mathcal{N}(0, K)\]
forward diffusion on signal
\[\mu_t = \alpha(t)\mu + \beta(t)z,~z \sim \mathcal{N}(0, K)\]
forward diffusion on measurement
\[Be^{-A\mu_t} = Be^{-A\alpha(t)\mu}e^{-A\beta(t)z}\]
\[y_t = Be^{-A\mu_t} + e^{-A\beta(t)z} v = e^{-A\beta(t)z}\left[Be^{-A\alpha(t)\mu} + v\right]\]
set \(\alpha(t) = 1\)
\(= e^{-A\beta(t)z}y\)