Jacopo Teneggi, Matthew Tivnan, J. Webster Stayman, and Jeremias Sulam
57th Annual Conference on Information Science and Systems
restoration
inpainting
CT reconstruction
restoration
inpainting
CT reconstruction
To retrieve the ground-truth signal \(x\) given a noisy observation \(y\) with
\[y = x + v,~v \sim \mathcal{N}(0, \mathbb{I})\]
Given a set \(S = \{(x_i, y_i)\}_{i=1}^n\) train \(f:~\mathcal{Y} \to \mathcal{X}\) such that
\[\hat{f} = \arg\min~\frac{1}{n} \sum_{(x_i, y_i) \in S} \|x_i - f(y_i)\|^2\]
Original
Perturbed
Denoised
Given a set \(S = \{(x_i, y_i)\}_{i=1}^n\) train \(f:~\mathcal{Y} \to \mathcal{X}\) such that
\[\hat{f} = \arg\min~\frac{1}{n} \sum_{(x_i, y_i) \in S} \|x_i - f(y_i)\|^2\]
Original
Perturbed
Denoised
- Loss of high-frequency information
- Point predictors
Sample from the conditional posterior distribution
\[p(x \mid y)\]
by means of a stochastic function \(F:~\mathcal{Y} \to \mathcal{X}\).
Original
Perturbed
Sampled
Sample from the posterior distribution
\[p(x \mid y)\]
by means of a stochastic function \(F:~\mathcal{Y} \to \mathcal{X}\)
Original
Perturbed
Sampled
- Varied and high-quality samples
- Can be conditioned on several measurement models
- How different will a new sample \(F(y)\) be?
- How far from the ground-truth signal \(x\)?
Fix \(y \in \mathbb{R}^d\) and sample \(m\) times from \(F(y) \in \mathbb{R}^d\)
Q: Where will the \((m+1)^{\text{th}}\) sample be?
Lemma (informal) For every feature \(j \in [d]\)
\[\mathcal{I}(y)_j = \left[\text{lower cal. quantile}, \text{upper cal. quantile}\right]\]
provides entrywise coverage, i.e.
\[\mathbb{P}\left[\text{next sample}_j \in \mathcal{I}(y)_j\right] \geq 1 - \alpha\]
Calibrated quantiles For a miscoverage level \(\alpha\)
\(0\)
\(1\)
\(\frac{\alpha}{2}\)
\(\frac{(1 -\alpha)}{2}\)
\(\frac{\lfloor(m+1)\alpha/2\rfloor}{m}\)
\(\frac{\lceil(m+1)(1 - \alpha/2)\rceil}{m}\)
Original
Perturbed
Lower
Upper
Interval size
For a pair \((x, y)\) sample from \(F(y)\) and compute \(\mathcal{I}(y)\)
Q: How many ground-truth features \(x_j\) are not in their respective intervals \(\mathcal{I}(y)_j\)?
Risk Controlling Prediction Sets (RCPS) For a risk level \(\epsilon\) and failure probability \(\delta\)
\[\mathbb{P}\left[\mathbb{E}\left[\text{number of pixels not in intervals}\right] \leq \epsilon\right] \geq 1 - \delta\]
Procedure Define
\[\mathcal{I}_{\lambda}(y)_j = [\text{lower} - \lambda, \text{upper} + \lambda]\]
and choose
\[\hat{\lambda} = \inf\{\lambda \in \mathbb{R}:~\text{risk is controlled},~\forall \lambda' \geq \lambda\}\]
\(\lambda\)
\(R(\lambda)\)
\(\epsilon\)
\(\lambda^*\)
risk is controlled
Procedure Define
\[\mathcal{I}_{\lambda}(y)_j = [\text{lower} - \lambda, \text{upper} + \lambda]\]
and choose
\[\hat{\lambda} = \inf\{\lambda \in \mathbb{R}:~\text{risk is controlled},~\forall \lambda' \geq \lambda\}\]
\(\lambda\)
\(R(\lambda)\)
\(\epsilon\)
\(\lambda^*\)
risk is controlled
- Choosing a scalar \(\lambda\) may be suboptimal
- No explicit minimization of interval length
For \(\bm{\lambda} \in \mathbb{R}^d\) define
\[\mathcal{I}_{\bm{\lambda}}(y)_j = [\text{lower} - \lambda_j, \text{upper} + \lambda_j]\]
and minimize the mean interval length with risk control
\[\hat{\bm{\lambda}} = \arg\min~\sum_{j \in [d]} \lambda_j~\quad\text{s.t. risk is controlled}\]
THE CONSTRAINT SET IS NOT CONVEX
\[\downarrow\]
NEED FOR A CONVEX RELAXATION
For \(\bm{\lambda} \in \mathbb{R}^d\) define
\[\mathcal{I}_{\bm{\lambda}}(y)_j = [\text{lower} - \lambda_j, \text{upper} + \lambda_j]\]
and minimize the mean interval length with risk control
\[\bm{\lambda} = \arg\min~\sum_{j \in [d]} \lambda_j~\quad\text{s.t. risk is controlled}\]
THE CONSTRAINT SET IS NOT CONVEX
\[\downarrow\]
NEED FOR A CONVEX RELAXATION
For any user-defined membership \(M \in \mathbb{R}^{d \times K}\) :
1. Solve
\[\tilde{\bm{\lambda}}_K = \arg\min~\sum_{k \in [K]}n_k\lambda_k~\quad\text{s.t. convex upper bound} \leq \epsilon\]
2. Choose
\[\hat{\beta} = \inf\{\beta \in \mathbb{R}:~\text{risk is controlled},~\forall M\tilde{\bm{\lambda}}_K + \beta'\mathbb{1},~\beta' \geq \beta\}\]
\[\downarrow\]
\[\hat{\bm{\lambda}}_K = M\tilde{\bm{\lambda}}_K + \hat{\beta}\mathbb{1}\]
For any user-defined membership \(M \in \mathbb{R}^{d \times K}\) :
1. Solve
\[\tilde{\bm{\lambda}}_K = \arg\min~\sum_{k \in [K]}n_k\lambda_k~\quad\text{s.t. convex upper bound} \leq \epsilon\]
2. Choose
\[\hat{\beta} = \inf\{\beta \in \mathbb{R}:~\text{risk is controlled},~\forall M\tilde{\bm{\lambda}}_K + \beta'\mathbb{1},~\beta' \geq \beta\}\]
RCPS \((\lambda_1 = \lambda_2 = \lambda)\)
\(K\)-RCPS
gain
\[\text{RCPS}~\quad~\text{ }~0.1614 \pm 0.0020\]
\[K\text{-RCPS}~\quad~0.1391 \pm 0.0025\]
Jacopo Teneggi
Matt Tivnan
Web Stayman
Jeremias Sulam
Preprint:
GitHub repo: