An overview of SDF
Original Definition
Definition in NeuS
SDF: Signed Distance Function
從該點到最近表面的最短距離
Characteristic
Surface
Surface Normal
Eikonal Equation
Characteristic
Characteristic
Pros and Cons
Pros
Cons
Directly use 2D images as supervision
NeuS (NeurIPS 2021, Wang et al.)
Author of F2-NeRF
NeuS (NeurIPS 2021, Wang et al.)
Recap: NeRF
MLP
NeuS (NeurIPS 2021, Wang et al.)
Recap: NeRF
MLP
Volume Rendering
NeuS (NeurIPS 2021, Wang et al.)
Recap: NeRF
MLP
Volume Rendering
NeuS (NeurIPS 2021, Wang et al.)
MLP
Volume Rendering
How to perform volume rendering?
NeuS (NeurIPS 2021, Wang et al.)
MLP
Volume Rendering
NeuS (NeurIPS 2021, Wang et al.)
MLP
Volume Rendering
NeuS (NeurIPS 2021, Wang et al.)
Volume Rendering
NeuS (NeurIPS 2021, Wang et al.)
Volume Rendering
logistic density
distribution
Biased!
NeuS (NeurIPS 2021, Wang et al.)
Volume Rendering
logistic density
distribution
unbiased
but not occlusion-aware
NeuS (NeurIPS 2021, Wang et al.)
Volume Rendering
Goal: to derive an unbiased and occlusion-aware weight function
NeuS (NeurIPS 2021, Wang et al.)
Volume Rendering
NeuS (NeurIPS 2021, Wang et al.)
Volume Rendering
NeuS (NeurIPS 2021, Wang et al.)
Volume Rendering
NeuS (NeurIPS 2021, Wang et al.)
Volume Rendering
NeuS (NeurIPS 2021, Wang et al.)
Volume Rendering
NeuS (NeurIPS 2021, Wang et al.)
Volume Rendering
NeuS (NeurIPS 2021, Wang et al.)
Loss Terms
NeuS (NeurIPS 2021, Wang et al.)
Results
NeuS (NeurIPS 2021, Wang et al.)
Results
Chamfer Distance
Neuralangelo (CVPR 2023, Li et al.)
Author of InstantNGP
Neuralangelo (CVPR 2023, Li et al.)
Neuralangelo (CVPR 2023, Li et al.)
Neuralangelo (CVPR 2023, Li et al.)
Recap: InstantNGP
Neuralangelo (CVPR 2023, Li et al.)
Numerical Gradients
Neuralangelo (CVPR 2023, Li et al.)
Numerical Gradients
Only update entries near sample point
By choosing eps, it can "smooth" the output
Neuralangelo (CVPR 2023, Li et al.)
Numerical Gradients
Neuralangelo (CVPR 2023, Li et al.)
Coarse-to-fine
Neuralangelo (CVPR 2023, Li et al.)
Loss Terms
Neuralangelo (CVPR 2023, Li et al.)
Loss Terms
Neuralangelo (CVPR 2023, Li et al.)
Results
Neuralangelo (CVPR 2023, Li et al.)
Results
Neuralangelo (CVPR 2023, Li et al.)
Results
Neuralangelo (CVPR 2023, Li et al.)
Results
3D Generation
One-2-3-45 (NeurIPS 2023, Liu et al.)
One-2-3-45 (NeurIPS 2023, Liu et al.)
Goal
One-2-3-45 (NeurIPS 2023, Liu et al.)
Methods
One-2-3-45 (NeurIPS 2023, Liu et al.)
Training
One-2-3-45 (NeurIPS 2023, Liu et al.)
Results
One-2-3-45 (NeurIPS 2023, Liu et al.)
Results
BlockFusion (arXiv 2024, Wu et al.)
BlockFusion (arXiv 2024, Wu et al.)
BlockFusion (arXiv 2024, Wu et al.)
Goal
To generate unbounded 3D scene geometry conditioned on 2D layout
BlockFusion (arXiv 2024, Wu et al.)
Datasets
BlockFusion (arXiv 2024, Wu et al.)
Methods
1.
2.
BlockFusion (arXiv 2024, Wu et al.)
Methods - Raw Tri-plane Fitting
A training block
corresponding tri-plane
BlockFusion (arXiv 2024, Wu et al.)
Methods
1.
2.
BlockFusion (arXiv 2024, Wu et al.)
Methods - Latent Tri-plane
BlockFusion (arXiv 2024, Wu et al.)
Methods - Latent Tri-plane
BlockFusion (arXiv 2024, Wu et al.)
Methods
1.
2.
How to generate unbounded scene?
BlockFusion (arXiv 2024, Wu et al.)
Methods - Latent Tri-plane Extrapolation
BlockFusion (arXiv 2024, Wu et al.)
Methods - Latent Tri-plane Extrapolation
BlockFusion (arXiv 2024, Wu et al.)
Time
BlockFusion (arXiv 2024, Wu et al.)
Results
BlockFusion (arXiv 2024, Wu et al.)
Results
BlockFusion (arXiv 2024, Wu et al.)
Results
BlockFusion (arXiv 2024, Wu et al.)
Results
BlockFusion (arXiv 2024, Wu et al.)
Results
BlockFusion (arXiv 2024, Wu et al.)
Results
Conclusion