Jeriek Van den Abeele
Tools 2020
@JeriekVda
Based on arXiv:2006.16273 with A. Buckley, A. Kvellestad, A. Raklev, P. Scott, J. V. Sparre, and I. A. Vazquez-Holm
IP2I, Lyon
Global fits address the need for a consistent comparison of BSM theories to all relevant experimental data
Challenge:
Scanning increasingly high-dimensional parameter spaces with varying phenomenology
Exploration of a combined likelihood function:
\(\mathcal{L} = \mathcal{L}_\mathsf{collider} \times \mathcal{L}_\mathsf{Higgs} \times \mathcal{L}_\mathsf{DM} \times \mathcal{L}_\mathsf{EWPO} \times \mathcal{L}_\mathsf{flavour} \times \ldots\)
See GAMBIT talk Friday!
Global fits address the need for a consistent comparison of BSM theories to all relevant experimental data
Challenge:
Scanning increasingly high-dimensional parameter spaces with varying phenomenology
Exploration of a combined likelihood function:
\(\mathcal{L} = \mathcal{L}_\mathsf{collider} \times \mathcal{L}_\mathsf{Higgs} \times \mathcal{L}_\mathsf{DM} \times \mathcal{L}_\mathsf{EWPO} \times \mathcal{L}_\mathsf{flavour} \times \ldots\)
Global fits need quick, but sufficiently accurate theory predictions
BSM scans today easily require \(\sim 10^7\) samples or more
Higher-order BSM production cross-sections and theoretical uncertainties make a significant difference!
[GAMBIT, 1705.07919]
CMSSM
[hep-ph/9610490]
Existing higher-order evaluation tools are insufficient for large MSSM scans
$$ pp\to\tilde g \tilde g,\ \tilde g \tilde q_i,\ \tilde q_i \tilde q_j, $$
$$\tilde q_i \tilde q_j^{*},\ \tilde b_i \tilde b_i^{*},\ \tilde t_i \tilde t_i^{*}$$
at \(\mathsf{\sqrt{s}=13} \) TeV
xsec 1.0 performs smart regression for strong SUSY processes at the LHC
A. Buckley, A. Kvellestad, A. Raklev, P. Scott, J. V. Sparre, JVDA, I. A. Vazquez-Holm
$$$
Interpolation ...
Interpolation ... doesn't give prediction uncertainty!
Correlation length-scale
Correlation length-scale
Correlation length-scale
Correlation length-scale
Correlation length-scale
Correlation length-scale
Correlation length-scale
Correlation length-scale
Correlation length-scale
Estimate from data!
Correlation length-scale
Estimate from data!
Correlation length-scale
Gaussian process prediction with uncertainty
Estimate from data!
prior distribution over all functions
with the estimated smoothness
prior distribution over all functions
with the estimated smoothness
posterior distribution over functions
with updated \(m(\vec x)\)
data
target function
target function
Squared Exponential kernel
Matérn-3/2 kernel
GPs allow us to use probabilistic inference to learn a function from data, in an interpretable, analytical, yet non-parametric Bayesian framework.
A GP model is fully specified once the mean function, the kernel and its hyperparameters are chosen.
The probabilistic interpretation only holds under the assumption that the chosen kernel accurately describes the true correlation structure.
The choice of kernel allows for great flexibility. But once chosen, it fixes the type of functions likely under the GP prior and determines the kind of structure captured by the model, e.g., periodicity and differentiability.
The choice of kernel allows for great flexibility. But once chosen, it fixes the type of functions likely under the GP prior and determines the kind of structure captured by the model, e.g., periodicity and differentiability.
The choice of kernel allows for great flexibility. But once chosen, it fixes the type of functions likely under the GP prior and determines the kind of structure captured by the model, e.g., periodicity and differentiability.
For our multi-dimensional case of cross-section regression, we get good results by multiplying Matérn (\(\nu = 3/2\)) kernels over the different mass dimensions:
The different lengthscale parameters \(l_d\) lead to automatic relevance determination for each feature: short-range correlations for important features over which the target function varies strongly.
This is an anisotropic, stationary kernel. It allows for functions that are less smooth than with the standard squared-exponential kernel.
Short lengthscale, small noise
Long lengthscale, large noise
Underfitting, almost linear
Overfitting of fluctuations,
can lead to large uncertainties!
Typically, kernel hyperparameters are estimated by maximising the (log) marginal likelihood \(p( \vec y\ |\ \vec X, \vec \theta) \), aka the empirical Bayes method.
Alternative: MCMC integration over a range of \(\vec \theta\).
Gradient-based optimisation can get stuck in local optima and plateaus. Multiple initialisations can help, or global optimisation methods like differential evolution.
Global optimum: somewhere in between
Typically, kernel hyperparameters are estimated by maximising the (log) marginal likelihood \(p( \vec y\ |\ \vec X, \vec \theta) \), aka the empirical Bayes method.
Alternative: MCMC integration over a range of \(\vec \theta\).
Gradient-based optimisation can get stuck in local optima and plateaus. Multiple initialisations can help, or global optimisation methods like differential evolution.
The standard approach systematically underestimates prediction errors.
After accounting for the additional uncertainty from learning the hyper-parameters, the prediction error increases when far from training points.
[Wågberg+, 1606.03865]
Other tricks to improve the numerical stability of training:
Generating data
Random sampling
SUSY spectrum
Cross-sections
Optimise kernel hyperparameters
Training GPs
GP predictions
Input parameters
Linear algebra
Cross-section
estimates
Compute covariances between training points
Generating data
Random sampling
SUSY spectrum
Cross-sections
Optimise kernel hyperparameters
Training GPs
GP predictions
Input parameters
Linear algebra
Cross-section
estimates
XSEC
Compute covariances between training points
Training scales as \(\mathcal{O}(n^3)\), prediction as \(\mathcal{O}(n^2)\)
Random sampling with different priors, directly in mass space
Evaluation speed
Sample coverage
Need to cover a large parameter space
Distributed Gaussian processes
[Liu+, 1806.00720]
Divide-and-conquer approach for dealing with large datasets
The exact weighting procedure is important, to ensure
"Generalized Robust Bayesian Committee Machine"
Sometimes, a curious problem arises: negative predictive variances!
It is due to numerical errors when computing the inverse of the covariance matrix \(K\). When \(K\) contains many training points, there is a good chance that some of them are similar:
Nearly equal columns make \(K\) ill-conditioned. One or more eigenvalues \(\lambda_i\) are close to zero and \(K\) can no longer be inverted reliably. The number of significant digits lost is roughly the \(\log_{10}\) of the condition number
This becomes problematic when \(\kappa \gtrsim 10^8 \). In the worst-case scenario,
signal-to-noise ratio
number of points
[Mohammadi+, 1602.00853]
pip install xsec
xsec-download-gprocs --process_type gg
# Set directory and cache choices
xsec.init(data_dir="gprocs")
# Set center-of-mass energy (in GeV)
xsec.set_energy(13000)
# Load GP models for the specified process(es)
processes = [(1000021, 1000021)]
xsec.load_processes(processes)
# Enter dictionary with parameter values
xsec.set_parameters(
{
"m1000021": 1000,
"m1000001": 500,
"m1000002": 500,
"m1000003": 500,
"m1000004": 500,
"m1000005": 500,
"m1000006": 500,
"m2000001": 500,
"m2000002": 500,
"m2000003": 500,
"m2000004": 500,
"m2000005": 500,
"m2000006": 500,
"sbotmix11": 0,
"stopmix11": 0,
"mean": 500,
}
)
# Evaluate the cross-section with the given input parameters
xsec.eval_xsection()
# Finalise the evaluation procedure
xsec.finalise()
Fast estimate of SUSY (strong) production cross- sections at NLO, and uncertainties from
Goal
$$ pp\to\tilde g \tilde g,\ \tilde g \tilde q_i,\ \tilde q_i \tilde q_j, $$
$$\tilde q_i \tilde q_j^{*},\ \tilde b_i \tilde b_i^{*},\ \tilde t_i \tilde t_i^{*}$$
Interface
Method
Pre-trained, distributed Gaussian processes
Python tool with command-line interface
Processes
at \(\mathsf{\sqrt{s}=13}\) TeV
Tutorial on Friday!
Thank you!
Regression problem, with 'measurement' noise:
\(y=f(\vec x) + \varepsilon, \ \varepsilon\sim \mathcal{N}(0,\sigma_n^2) \quad \rightarrow \quad \) infer \(f\), given data \(\mathcal{D} = \{\vec X, \vec y\}\)
Assume covariance structure expressed by a kernel function, like
Consider the data as a sample from a multivariate Gaussian distribution
\([\vec x_1, \vec x_2, \ldots]\)
\([y_1, y_2, \ldots]\)
signal kernel
white-noise kernel
Regression problem, with 'measurement' noise:
\(y=f(\vec x) + \varepsilon, \ \varepsilon\sim \mathcal{N}(0,\sigma_n^2) \quad \rightarrow \quad \) infer \(f\), given data \(\mathcal{D} = \{\vec X, \vec y\}\)
Training: optimise kernel hyperparameters by maximising the marginal likelihood
Posterior predictive distribution at a new point \(\vec x_*\) :
with
Implicit integration over points not in \(\vec X\)
[
prior over functions
The covariance matrix controls smoothness.
Assume it is given by a kernel function, like
posterior over functions
Bayesian approach to estimate \( y_* = f(x_*) \) :
Consider the data as a sample from a multivariate Gaussian distribution.
data
mean
covariance
[Beenakker+, hep-ph/9610490]